Instruction Manual

IM-106-340, Rev. 4.0 May 2006

Oxymitter 4000

System Description

The Oxymitter 4000 is designed to measure the net concentration of oxygen in an industrial combustion processes process; i.e., the oxygen remaining after all fuels have been oxidized. The probe is permanently positioned within an exhaust duct or stack and performs its task without the use of a sampling system.

The equipment measures oxygen percentage by reading the voltage developed across a heated electrochemical cell, which consists of a small yttria stabilized, zirconia disc. Both sides of the disc are coated with porous metal electrodes. When operated at the proper temperature, the millivolt output voltage of the cell is given by the following Nernst equation:

EMF = KT log10(P1/P2) + C

Where:

1.P2 is the partial pressure of the oxygen in the measured gas on one side of the cell.

2.P1 is the partial pressure of the oxygen in the reference air on the opposite side of the cell.

3.T is the absolute temperature.

4.C is the cell constant.

5.K is an arithmetic constant.

NOTE

For best results, use clean, dry, instrument air (20.95% oxygen) as the reference air.

When the cell is at operating temperature and there are unequal oxygen concentrations across the cell, oxygen ions will travel from the high oxygen partial pressure side to the low oxygen partial pressure side of the cell. The resulting logarithmic output voltage is approximately 50 mV per decade. The output is proportional to the inverse logarithm of the oxygen concentration. Therefore, the output signal increases as the oxygen concentration of the sample gas decreases. This characteristic enables the Oxymitter 4000 to provide exceptional sensitivity at low oxygen concentrations.

The Oxymitter 4000 measures net oxygen concentration in the presence of all the products of combustion, including water vapor. Therefore, it may be considered an analysis on a "wet" basis. In comparison with older methods, such as the portable apparatus, which provides an analysis on a "dry" gas basis, the "wet" analysis will, in general, indicate a lower percentage of oxygen. The difference will be proportional to the water content of the sampled gas stream.

1-3

Page 21
Image 21
Emerson Process Management IM-106-340 instruction manual System Description