2.1.3.1System Memory Frequency
December 2013 Order No.: 328897-004

Processor—Interfaces

be on opposite channels. Use Dual-Channel Symmetric mode when both Channel A and Channel B DIMM connectors are populated in any order, with the total amount of memory in each channel being the same.

When both channels are populated with the same memory capacity and the boundary between the dual channel zone and the single channel zone is the top of memory, the IMC operates completely in Dual-Channel Symmetric mode.

Note: The DRAM device technology and width may vary from one channel to the other.

2.1.3.1System Memory Frequency

In all modes, the frequency of system memory is the lowest frequency of all memory modules placed in the system, as determined through the SPD registers on the memory modules. The system memory controller supports one or two DIMM connectors per channel. The usage of DIMM modules with different latencies is allowed, but in that case, the worst latency (among two channels) will be used. For dual-channel modes, both channels must have a DIMM connector populated and for single-channel mode only a single channel may have one or both DIMM connectors populated.

Note: In a two-DIMM Per Channel (2DPC) layout memory configuration, the furthest DIMM from the processor of any given channel must always be populated first.

2.1.3.2Intel® Fast Memory Access (Intel® FMA) Technology Enhancements

The following sections describe the Just-in-Time Scheduling, Command Overlap, and Out-of-Order Scheduling Intel FMA technology enhancements.

Just-in-Time Command Scheduling

The memory controller has an advanced command scheduler where all pending requests are examined simultaneously to determine the most efficient request to be issued next. The most efficient request is picked from all pending requests and issued to system memory Just-in-Time to make optimal use of Command Overlapping. Thus, instead of having all memory access requests go individually through an arbitration mechanism forcing requests to be executed one at a time, the requests can be started without interfering with the current request allowing for concurrent issuing of requests. This allows for optimized bandwidth and reduced latency while maintaining appropriate command spacing to meet system memory protocol.

Command Overlap

Command Overlap allows the insertion of the DRAM commands between the Activate, Pre-charge, and Read/Write commands normally used, as long as the inserted commands do not affect the currently executing command. Multiple commands can be issued in an overlapping manner, increasing the efficiency of system memory protocol.

Out-of-Order Scheduling

While leveraging the Just-in-Time Scheduling and Command Overlap enhancements, the IMC continuously monitors pending requests to system memory for the best use of bandwidth and reduction of latency. If there are multiple requests to the same open page, these requests would be launched in a back-to-back manner to make optimum use of the open memory page. This ability to reorder requests on the fly allows the IMC to further reduce latency and increase bandwidth efficiency.

Desktop 4th Generation Intel® CoreProcessor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family

Datasheet – Volume 1 of 2 22

Page 22
Image 22
Intel BX80646I74770K System Memory Frequency, Intel Fast Memory Access Intel FMA Technology Enhancements, Command Overlap

BX80633I74960X, BX80646I34130, BX80646I54430, BX80646I74770K, BX80646I74770 specifications

The Intel CM8063701159502, or BX80637I53470, is a powerful CPU designed for modern computing needs. This processor belongs to Intel's 4th generation of Core i5 processors, commonly known as "Haswell". It showcases Intel's commitment to enhancing performance, increasing energy efficiency, and delivering an enriching user experience.

One of the main features of the Intel Core i5-3470 is its quad-core architecture. This allows the processor to handle multiple threads simultaneously, making it adept at multitasking and running demanding applications efficiently. With a base clock speed of 3.2 GHz, it can boost up to 3.6 GHz using Intel’s Turbo Boost technology, providing additional power when needed for intensive tasks like gaming or video editing.

The Intel i5-3470 features Intel's HD Graphics 2500, which offers decent graphics performance for everyday tasks and casual gaming. This integrated graphics solution is capable of delivering high-definition visuals and supports DirectX 11, making it suitable for lightweight gaming experiences without the need for an additional dedicated graphics card.

Another standout characteristic of the BX80637I53470 is its support for Intel Smart Cache, which is an advanced caching technology. It provides a shared cache pool that enhances performance by reducing the time it takes to access frequently used data. This feature, coupled with Intel's instruction set architecture, allows for improved processing agility and efficiency across applications.

The processor is built on a 22nm manufacturing process, which results in reduced power consumption and heat generation compared to its predecessors. It has a thermal design power (TDP) of 77 watts, making it energy efficient while still delivering robust performance. Additionally, the Core i5-3470 supports DDR3 memory, with speeds up to 1600 MHz, enabling quick data retrieval and improved system responsiveness.

Security is another important aspect of the Intel i5-3470, featuring Intel Secure Key and Intel AES New Instructions (AES-NI), which protect sensitive data and enhance encryption performance.

In conclusion, the Intel CM8063701159502, or BX80637I53470, encapsulates modern computing technology with its powerful quad-core performance, integrated graphics, energy efficiency, and robust security features, making it a versatile choice for a wide range of computing tasks. Whether users are engaging in casual gaming, productivity tasks, or multimedia consumption, this processor demonstrates a solid balance of performance and efficiency, providing an excellent computing experience overall.