Compensating for Differences in Encoder Resolution:

By default, the DMC-1700/1800 uses a scale factor of 1:1 for the encoder resolution when used in vector mode. If this is not the case, the command, ES can be used to scale the encoder counts. The ES command accepts two arguments which represent the number of counts for the two encoders used for vector motion. The smaller ratio of the two numbers will be multiplied by the higher resolution encoder. For more information, see ES command in the Command Reference.

Trippoints:

The AV n command is the After Vector trippoint, which waits for the vector relative distance of n to occur before executing the next command in a program.

Tangent Motion:

Several applications, such as cutting, require a third axis (i.e. a knife blade), to remain tangent to the coordinated motion path. To handle these applications, the DMC-1700/1800 allows one axis to be specified as the tangent axis. The VM command provides parameter specifications for describing the coordinated axes and the tangent axis.

VM m,n,p

m,n specifies coordinated axes p specifies tangent axis such as X,Y,Z,W p=N

 

turns off tangent axis

Before the tangent mode can operate, it is necessary to assign an axis via the VM command and define its offset and scale factor via the TN m,n command. m defines the scale factor in counts/degree and n defines the tangent position that equals zero degrees in the coordinated motion plane. The operand _TN can be used to return the initial position of the tangent axis.

Example:

Assume an XY table with the Z-axis controlling a knife. The Z-axis has a 2000 quad counts/rev encoder and has been initialized after power-up to point the knife in the +Y direction. A 180° circular cut is desired, with a radius of 3000, center at the origin and a starting point at (3000,0). The motion is CCW, ending at (-3000,0). Note that the 0° position in the XY plane is in the +X direction. This corresponds to the position -500 in the Z-axis, and defines the offset. The motion has two parts. First, X,Y and Z are driven to the starting point, and later, the cut is performed. Assume that the knife is engaged with output bit 0.

#EXAMPLE

Example program

VM XYZ

XY coordinate with Z as tangent

TN 2000/360,-500

2000/360 counts/degree, position -500 is 0 degrees in XY plane

CR 3000,0,180

3000 count radius, start at 0 and go to 180 CCW

VE

End vector

CB0

Disengage knife

PA 3000,0,_TN

Move X and Y to starting position, move Z to initial tangent position

BG XYZ

Start the move to get into position

AM XYZ

When the move is complete

SB0

Engage knife

WT50

Wait 50 msec for the knife to engage

BGS

Do the circular cut

AMS

After the coordinated move is complete

CB0

Disengage knife

MG “ALL DONE”

 

EN

End program

102 • Chapter 6 Programming Motion

DMC-1700/1800

Page 110
Image 110
Galil DMC-1800, DMC-1700 user manual Compensating for Differences in Encoder Resolution, Trippoints, Tangent Motion

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.