Off-On-Error

The DMC-1700/1800 controller has a built in function which can turn off the motors under certain error conditions. This function is know as ‘Off-On-Error”. To activate the OE function for each axis, specify 1 for X,Y,Z and W axis. To disable this function, specify 0 for the axes. When this function is enabled, the specified motor will be disabled under the following 3 conditions:

1.The position error for the specified axis exceeds the limit set with the command, ER

2.The abort command is given

3.The abort input is activated with a low signal.

Note: If the motors are disabled while they are moving, they may ‘coast’ to a stop because they are no longer under servo control.

To re-enable the system, use the Reset (RS) or Servo Here (SH) command. Examples:

OE 1,1,1,1

Enable off-on-error for X,Y,Z and W

OE 0,1,0,1

Enable off-on-error for Y and W axes and disable off-on-error for W and Z axes

Automatic Error Routine

The #POSERR label causes the statements following to be automatically executed if error on any axis exceeds the error limit specified by ER. The error routine must be closed with the RE command. The RE command returns from the error subroutine to the main program.

NOTE: The Error Subroutine will be entered again unless the error condition is gone. Example:

#A;JP #A;EN

“Dummy” program

#POSERR

Start error routine on error

MG “error”

Send message

SB 1

Fire relay

STX

Stop motor

AMX

After motor stops

SHX

Servo motor here to clear error

RE

Return to main program

NOTE: An applications program must be executing for the #POSERR routine to function.

Limit Switch Routine

The DMC-1700/1800 provides forward and reverse limit switches which inhibit motion in the respective direction. There is also a special label for automatic execution of a limit switch subroutine. The #LIMSWI label specifies the start of the limit switch subroutine. This label causes the statements following to be automatically executed if any limit switch is activated and that axis motor is moving in that direction. The RE command ends the subroutine.

The state of the forward and reverse limit switches may also be tested during the jump-on-condition statement. The _LR condition specifies the reverse limit and _LF specifies the forward limit. X,Y,Z, or W following LR or LF specifies the axis. The CN command can be used to configure the polarity of the limit switches.

Limit Switch Example:

#A;JP #A;EN

Dummy Program

#LIMSWI

Limit Switch Utility

V1=_LFX

Check if forward limit

V2=_LRX

Check if reverse limit

DMC-1700/1800

Chapter 8 Hardware & Software Protection • 179

Page 187
Image 187
Galil DMC-1700, DMC-1800 user manual Off-On-Error, Automatic Error Routine, Limit Switch Routine, #Ajp #Aen, V2=LRX

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.