Magnitude

 

 

 

4

 

 

 

1

 

 

 

50

200

2000

W (rad/s)

0.1

 

 

 

Figure 10.8 - Bode plot of the open loop transfer function

For the given example, the crossover frequency was computed numerically resulting in 200 rad/s. Next, we determine the phase of A(s) at the crossover frequency.

A(j200) = 390,000 (j200+51)/[(j200)2 . (j200 + 2000)]

α= Arg[A(j200)] = tan-1(200/51)-180° -tan-1(200/2000)

α= 76° - 180° - 6° = -110°

Finally, the phase margin, PM, equals

PM = 180° + α = 70°

As long as PM is positive, the system is stable. However, for a well damped system, PM should be between 30 degrees and 45 degrees. The phase margin of 70 degrees given above indicated overdamped response.

Next, we discuss the design of control systems.

System Design and Compensation

The closed-loop control system can be stabilized by a digital filter, which is preprogrammed in the DMC-1700/1800 controller. The filter parameters can be selected by the user for the best compensation. The following discussion presents an analytical design method.

The Analytical Method

The analytical design method is aimed at closing the loop at a crossover frequency, ωc, with a phase margin PM. The system parameters are assumed known. The design procedure is best illustrated by a design example.

Consider a system with the following parameters:

DMC-1700/1800

Chapter 10 Theory of Operation • 195

Page 203
Image 203
Galil DMC-1700, DMC-1800 user manual System Design and Compensation, Analytical Method, = 76 180 6 =, PM = 180 + α =

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.