17X8

1X80

The DMC-1718, 1728, 1738, 1748 controllers have 64 additional general I/O points. The user can configure these I/O points as inputs or outputs in blocks of 8.

The DMC-1750 through DMC-1780 and DMC-1850 through DMC-1880 controllers provide interface circuitry for 16 optoisolated inputs, 8 TTL inputs, 16 TTL outputs, and 8 analog inputs with 12-bit ADC (16-bit optional).

System Elements

As shown in Fig. 1.2, the DMC-1700/1800 is part of a motion control system which includes amplifiers, motors, and encoders. These elements are described below.

Power Supply

Computer

DMC-1700/1800

Controller

Encoder

Figure 1.2 - Elements of Servo systems

Driver

Motor

Motor

A motor converts current into torque, which produces motion. Each axis of motion requires a motor sized properly to move the load at the required speed and acceleration. (Galil’s “Motion Component Selector” software can help you with motor sizing). Download at www.galilmc.com/support/download, select “MCS”.

The motor may be a step or servo motor and can be brush-type or brushless, rotary or linear. For step motors, the controller can operate full-step, half-step, or microstep drives. An encoder is not required when step motors are used.

Amplifier (Driver)

For each axis, the power amplifier converts a +/-10 Volt signal from the controller into current to drive the motor. For stepper motors, the amplifier converts step and direction signals into current. The amplifier should be sized properly to meet the power requirements of the motor. For brushless motors, an amplifier that provides electronic commutation is required or the controller must be configured to provide sinusoidal commutation. The amplifiers may be either pulse-width-modulated (PWM) or linear. They may also be configured for operation with or without a tachometer. For current amplifiers, the amplifier gain should be set such that a 10 Volt command generates the maximum required current. For example, if the motor peak current is 10A, the amplifier gain should be 1 A/V. For velocity mode amplifiers, 10 Volts should run the motor at the maximum speed.

Encoder

An encoder translates motion into electrical pulses which are fed back into the controller. The DMC-1700/1800 accepts feedback from either a rotary or linear encoder. Typical encoders provide two channels in quadrature, known as CHA and CHB. This type of encoder is known as a quadrature encoder. Quadrature encoders may be

4 • Chapter 1 Overview

DMC-1700/1800

Page 12
Image 12
Galil DMC-1800, DMC-1700 user manual System Elements, Motor, Amplifier Driver, Encoder, 17X8 1X80

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.