CO n

Where, n is a decimal value, which represents a binary number. Each bit of the binary number represents one block of extended I/O. When set to 1, the corresponding block is configured as an output.

The least significant bit represents block 2 and the most significant bit represents block 9. The decimal value can be calculated by the following formula. n = n2 + 2*n3 + 4*n4 + 8*n5 +16* n6 +32* n7 +64* n8 +128* n9 where nx represents the block. If the nx value is a one, then the block of 8 I/O points is to be configured as an output. If the nx value is a zero, then the block of 8 I/O points will be configured as an input. For example, if block 4 and 5 is to be configured as an output, CO 12 is issued.

8-Bit I/O Block

Block

Binary Representation

Decimal Value for Block

 

 

 

 

 

17-24

2

2

0

1

 

 

 

 

 

 

 

 

25-32

3

21

2

33-40

4

22

4

41-48

5

23

8

49-56

6

24

16

57-64

7

25

32

65-72

8

26

64

73-80

9

27

128

 

 

 

 

 

The simplest method for determining n:

Step 1. Determine which 8-bit I/O blocks to be configured as outputs.

Step 2. From the table, determine the decimal value for each I/O block to be set as an output. Step 3. Add up all of the values determined in step 2. This is the value to be used for n.

For example, if blocks 2 and 3 are to be outputs, then n is 3 and the command, CO3, should be issued. Note: This

calculation is identical to the formula: n = n2 + 2*n3 + 4*n4 + 8*n5 +16* n6 +32* n7 +64* n8 +128* n9 where nx represents the block.

Saving the State of the Outputs in Non-Volatile Memory

The configuration of the extended I/O and the state of the outputs can be stored in the EEPROM with the BN command. If no value has been set, the default of CO 0 is used (all blocks are inputs).

Accessing extended I/O

When configured as an output, each I/O point may be defined with the SBn and CBn commands (where n=1 through 8 and 17 through 80). Outputs may also be defined with the conditional command, OBn (where n=1 through 8 and 17 through 80).

The command, OP, may also be used to set output bits, specified as blocks of data. The OP command accepts 5 parameters. The first parameter sets the values of the main output port of the controller (Outputs 1-8, block 0). The additional parameters set the value of the extended I/O as outlined:

OP m,a,b,c,d

where m is the decimal representation of the bits 1-8 (values from 0 to 255) and a,b,c,d represent the extended I/O in consecutive groups of 16 bits. (values from 0 to 65535). Arguments which are given for I/O points which are configured as inputs will be ignored. The following table describes the arguments used to set the state of outputs.

220 • Appendices

DMC-1700/1800

Page 228
Image 228
Galil DMC-1800 Saving the State of the Outputs in Non-Volatile Memory, Accessing extended I/O, CO n, OP m,a,b,c,d

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.