Chapter 8 Hardware & Software Protection

Introduction

The DMC-1700/1800 provides several hardware and software features to check for error conditions and to inhibit the motor on error. These features help protect the various system components from damage.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the user to design effective error handling and safety protection as part of the machine. Since the DMC-1700/1800 is an integral part of the machine, the engineer should design his overall system with protection against a possible component failure on the DMC- 1700/1800. Galil shall not be liable or responsible for any incidental or consequential damages.

Hardware Protection

The DMC-1700/1800 includes hardware input and output protection lines for various error and mechanical limit conditions. These include:

Output Protection Lines

Amp Enable - This signal goes low when the motor off command is given, when the position error exceeds the value specified by the Error Limit (ER) command, or when off-on-error condition is enabled (OE1) and the abort command is given. Each axis amplifier has separate amplifier enable lines. This signal also goes low when the watch-dog timer is activated, or upon reset. Note: The standard configuration of the AEN signal is TTL active low. Both the polarity and the amplitude can be changed if you are using the ICM-1900 interface board. To make these changes, see section entitled ‘Amplifier Interface’ pg 3-47.

Error Output - The error output is a TTL signal which indicates an error condition in the controller. This signal is available on the interconnect module as ERROR. When the error signal is low, this indicates one of the following error conditions:

1.At least one axis has a position error greater than the error limit. The error limit is set by using the command ER.

2.The reset line on the controller is held low or is being affected by noise.

3.There is a failure on the controller and the processor is resetting itself.

4.There is a failure with the output IC which drives the error signal.

Input Protection Lines

General Abort - A low input stops commanded motion instantly without a controlled deceleration. For any axis in which the Off-On-Error function is enabled, the amplifiers will be disabled. This could cause the motor to ‘coast’ to

DMC-1700/1800

Chapter 8 Hardware & Software Protection • 177

Page 185
Image 185
Galil DMC-1700, DMC-1800 user manual Hardware Protection, Output Protection Lines, Input Protection Lines

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.