VELOCITY

 

 

 

 

 

(COUNTS/SEC)

 

 

 

 

 

 

X axis velocity profile

 

 

 

20000

 

 

 

Y axis velocity profile

 

 

 

 

 

 

15000

 

 

 

 

 

10000

 

 

 

Z axis velocity profile

 

 

 

 

 

5000

 

 

 

 

TIME (ms)

 

 

 

 

 

0

20

40

60

80

100

Figure 6.1 - Velocity Profiles of XYZ

Notes on fig 6.1: The X and Y axis have a ‘trapezoidal’ velocity profile, while the Z axis has a ‘triangular’ velocity profile. The X and Y axes accelerate to the specified speed, move at this constant speed, and then decelerate such that the final position agrees with the command position, PR. The Z axis accelerates, but before the specified speed is achieved, must begin deceleration such that the axis will stop at the commanded position. All 3 axes have the same acceleration and deceleration rate, hence, the slope of the rising and falling edges of all 3 velocity profiles are the same.

Independent Jogging

The jog mode of motion is very flexible because speed, direction and acceleration can be changed during motion. The user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC) rate for each axis. The direction of motion is specified by the sign of the JG parameters. When the begin command is given (BG), the motor accelerates up to speed and continues to jog at that speed until a new speed or stop (ST) command is issued. If the jog speed is changed during motion, the controller will make a accelerated (or decelerated) change to the new speed.

An instant change to the motor position can be made with the use of the IP command. Upon receiving this command, the controller commands the motor to a position which is equal to the specified increment plus the current position. This command is useful when trying to synchronize the position of two motors while they are moving.

Note that the controller operates as a closed-loop position controller while in the jog mode. The DMC-1700/1800 converts the velocity profile into a position trajectory and a new position target is generated every sample period. This method of control results in precise speed regulation with phase lock accuracy.

Command Summary - Jogging

COMMAND

AC x,y,z,w

BG XYZW

DC x,y,z,w

IP x,y,z,w

IT x,y,z,w

JG +/-x,y,z,w

ST XYZW

DESCRIPTION Specifies acceleration rate Begins motion Specifies deceleration rate Increments position instantly

Time constant for independent motion smoothing Specifies jog speed and direction

Stops motion

DMC-1700/1800

Chapter 6 Programming Motion • 89

Page 97
Image 97
Galil DMC-1700, DMC-1800 user manual Independent Jogging, Command Summary Jogging, Axis velocity profile

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.