To illustrate the ability to interrogate the motion status, consider the first motion segment of our example, #LMOVE, where the X axis moves toward the point X=5000. Suppose that when X=3000, the controller is interrogated using the command ‘MG _AV’. The returned value will be 3000. The value of _CS, _VPX and _VPY will be zero.

Now suppose that the interrogation is repeated at the second segment when Y=2000. The value of _AV at this point is 7000, _CS equals 1, _VPX=5000 and _VPY=0.

Example - Linear Move

Make a coordinated linear move in the ZW plane. Move to coordinates 40000,30000 counts at a vector speed of 100000 counts/sec and vector acceleration of 1000000 counts/sec2.

LM ZW

Specify axes for linear interpolation

LI,,40000,30000

Specify ZW distances

LE

Specify end move

VS 100000

Specify vector speed

VA 1000000

Specify vector acceleration

VD 1000000

Specify vector deceleration

BGS

Begin sequence

Note that the above program specifies the vector speed, VS, and not the actual axis speeds VZ and VW. The axis speeds are determined by the controller from:

VS = VZ 2 + VW 2

The result is shown in Figure 6.2

98 • Chapter 6 Programming Motion

DMC-1700/1800

Page 106
Image 106
Galil DMC-1800, DMC-1700 user manual Example Linear Move, Lm Zw

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.