EG x,y,z,w

where x,y,z,w are the master positions at which the corresponding slaves must be engaged.

If the value of any parameter is outside the range of one cycle, the cam engages immediately. When the cam is engaged, the slave position is redefined, modulo one cycle.

Step 7. Disengage the slave motion

To disengage the cam, use the command

EQ x,y,z,w

where x,y,z,w are the master positions at which the corresponding slave axes are disengaged.

3000

2250

1500

0

2000

4000

6000

Master X

Figure 6.4: Electronic Cam Example

This disengages the slave axis at a specified master position. If the parameter is outside the master cycle, the stopping is instantaneous.

To illustrate the complete process, consider the cam relationship described by the equation:

Y = 0.5 * X + 100 sin (0.18*X)

where X is the master, with a cycle of 2000 counts.

The cam table can be constructed manually, point by point, or automatically by a program. The following program includes the set-up.

The instruction EAX defines X as the master axis. The cycle of the master is

2000. Over that cycle, Y varies by 1000. This leads to the instruction EM 2000,1000.

Suppose we want to define a table with 100 segments. This implies increments of 20 counts each. If the master points are to start at zero, the required instruction is EP 20,0.

The following routine computes the table points. As the phase equals 0.18X and X varies in increments of 20, the phase varies by increments of 3.6°. The program then computes the values of Y according to the equation and assigns the values to the table with the instruction ET[N] = ,Y.

INSTRUCTION INTERPRETATION

#SETUPLabel

110 • Chapter 6 Programming Motion

DMC-1700/1800

Page 118
Image 118
Galil DMC-1800, DMC-1700 user manual EG x,y,z,w, EQ x,y,z,w

DMC-1800, DMC-1700 specifications

The Galil DMC-1700 and DMC-1800 are advanced motion controllers widely recognized for their high performance and versatility in the automation and robotics industries. These controllers are designed to meet the demands of complex motion control applications, providing users with enhanced features and innovative technologies that optimize motion precision and efficiency.

One of the main features of the Galil DMC-1700 is its ability to handle up to 8 axes of motion control. This capability makes it suitable for a range of applications, from simple point-to-point movements to intricate trajectories in multi-axis systems. In contrast, the DMC-1800 extends this functionality, supporting up to 64 axes, making it ideal for large-scale automation environments.

Both models leverage Galil's powerful programming interface, which simplifies the development of motion control applications. The DMC-1700 and DMC-1800 controllers utilize a high-level programming language that supports advanced motion commands, including linear interpolation, circular interpolation, and complex motion profiles. This feature allows users to implement sophisticated motion sequences seamlessly.

In terms of connectivity, the Galil DMC series offers multiple communication options, including Ethernet, RS-232, and CAN bus, ensuring compatibility with various hardware and enabling easy integration into existing systems. The controllers also come equipped with digital and analog I/O ports, providing flexibility for sensor feedback and actuator control.

The advanced technology incorporated into both the DMC-1700 and DMC-1800 includes on-board PID control, which ensures precise motion control through closed-loop feedback. This results in improved stability and accuracy, particularly in high-speed applications. Additionally, the controllers offer extensive diagnostics and monitoring capabilities, allowing for real-time performance analysis and troubleshooting.

Another notable characteristic of these motion controllers is their compact design, which offers space-saving advantages while maintaining high processing power. Their robust construction and ability to operate in challenging environments make them suitable for a wide range of industrial applications, from CNC machining to assembly lines.

In conclusion, the Galil DMC-1700 and DMC-1800 motion controllers stand out due to their high-performance capabilities, advanced programming features, and flexibility in connectivity. With their ability to handle complex motion control tasks efficiently, these controllers are invaluable tools for engineers and manufacturers looking to enhance their automation processes. By integrating Galil's innovative motion control technology, industries can achieve greater precision, speed, and reliability in their operational workflows.