SUSP1-SUSP4 — Downstream Po rt Selective Suspend Bit

This read/write bit forces the downstream port entering the selective suspend mode. This bit can be set by the host request SetPortFeature (PORT_SUSPEND) only. When this bit is set, the hub prevents propagating any bus activity (except the port reset or port resume request or the global reset signal) downstream, and the port can only reflect upstream bus state changes via the endpoint 1 of the hub. The blocking occurs at the next EOF2 point when this bit is set. Reset clears this bit.

1 = Force downstream port enters the selective suspend mode 0 = Default

D1+/D1– to D4+/D4– — Downs tream Port Differential Data

These read only bits are the differential data shown on the HUB downstream ports. When the bit SUSPND in the register HRPCR is 0, the data is the latched state at the last EOF2 sample point. When the bit SUSPND is 1, the data reflects the current state on the data line while accessing this register.

9.4.3 USB SIE Timing Interrupt Register (SIETIR)

Address:

Read:

Write:

Reset:

$0056

 

 

 

 

 

 

 

Bit 7

6

5

4

3

2

1

Bit 0

 

 

 

 

 

 

 

 

SOFF

EOF2F

EOPF

TRANF

SOFIE

EOF2IE

EOPIE

TRANIE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

0

0

0

0

0

 

= Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-4. USB SIE Timing Interrupt Register (SIETIR)

MC68HC(7)08KH12 Rev. 1.1

Advance Information

 

 

Freescale Semiconductor

123

Page 123
Image 123
Freescale Semiconductor MC68HC08KH12 manual USB SIE Timing Interrupt Register Sietir, 123

MC68HC08KH12 specifications

The Freescale Semiconductor MC68HC08KH12 is a versatile microcontroller that has gained popularity in various embedded systems applications. Part of the HC08 family, this microcontroller combines a robust architecture with comprehensive on-chip features, making it suitable for a wide range of applications ranging from industrial control to consumer electronics.

One of the main features of the MC68HC08KH12 is its 8-bit architecture, which provides an optimal balance between performance and power efficiency. It operates at clock speeds of up to 2 MHz, allowing for efficient execution of instructions while maintaining low power consumption. The microcontroller is designed to operate over a voltage range of 2.7 to 5.5 volts, making it adaptable to various system requirements.

The MC68HC08KH12 is equipped with 1 Kbyte of RAM and 12 Kbytes of ROM, which allows for substantial program and data storage. The on-chip memory helps reduce the need for external components, simplifying the design of embedded systems and enhancing reliability. With a wide range of I/O options, including 26 general-purpose I/O pins, the microcontroller provides flexibility in interfacing with sensors, actuators, and other devices.

In terms of technologies, the MC68HC08KH12 features an advanced instruction set that enhances programming efficiency. It supports basic arithmetic operations, bit manipulation, and control transfer instructions, making it suitable for a variety of computational tasks. The integrated timers, analog-to-digital converters, and serial communication interfaces, including UART, provide the necessary tools for real-time control and data exchange with peripheral devices.

Another characteristic of the MC68HC08KH12 is its low power mode capabilities, which allow it to enter a sleep state during periods of inactivity. This feature is essential in battery-powered applications, where minimizing power consumption is crucial for extending operational life.

Overall, the Freescale Semiconductor MC68HC08KH12 stands out as a reliable microcontroller that combines performance, flexibility, and power efficiency. Its extensive features and technologies enable engineers to design robust embedded systems that meet the demands of modern applications. As a result, the MC68HC08KH12 remains a valuable choice for developers seeking a highly functional yet cost-effective microcontroller solution.