If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.

11.7 TIM During Break Interrupts

A break interrupt stops the TIM counter.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 7.8.3 Break Flag Control Register (BFCR).)

To allow software to clear status bits during a break interrupt, write a logic one to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic zero. After the break, doing the second step clears the status bit.

11.8 I/O Signals

Port E shares three of its pins with the TIM. PTE0/TCLK is and external clock input to the TIM prescaler. The two TIM channel I/O pins are PTE1/TCH0 and PTE2/TCH1.

11.8.1 TIM Clock Pin (PTE0/TCLK)

PTE0/TCLK is an external clock input that can be the clock source for the TIM counter instead of the prescaled internal bus clock. Select the PTE0/TCLK input by writing logic ones to the three prescaler select bits, PS[2:0]. (See 11.9.1 TIM Status and Control Register (TSC).) The

Advance Information

MC68HC(7)08KH12 Rev. 1.1

 

 

172

Freescale Semiconductor

Page 172
Image 172
Freescale Semiconductor MC68HC08KH12 manual TIM During Break Interrupts, 11.8 I/O Signals, 172

MC68HC08KH12 specifications

The Freescale Semiconductor MC68HC08KH12 is a versatile microcontroller that has gained popularity in various embedded systems applications. Part of the HC08 family, this microcontroller combines a robust architecture with comprehensive on-chip features, making it suitable for a wide range of applications ranging from industrial control to consumer electronics.

One of the main features of the MC68HC08KH12 is its 8-bit architecture, which provides an optimal balance between performance and power efficiency. It operates at clock speeds of up to 2 MHz, allowing for efficient execution of instructions while maintaining low power consumption. The microcontroller is designed to operate over a voltage range of 2.7 to 5.5 volts, making it adaptable to various system requirements.

The MC68HC08KH12 is equipped with 1 Kbyte of RAM and 12 Kbytes of ROM, which allows for substantial program and data storage. The on-chip memory helps reduce the need for external components, simplifying the design of embedded systems and enhancing reliability. With a wide range of I/O options, including 26 general-purpose I/O pins, the microcontroller provides flexibility in interfacing with sensors, actuators, and other devices.

In terms of technologies, the MC68HC08KH12 features an advanced instruction set that enhances programming efficiency. It supports basic arithmetic operations, bit manipulation, and control transfer instructions, making it suitable for a variety of computational tasks. The integrated timers, analog-to-digital converters, and serial communication interfaces, including UART, provide the necessary tools for real-time control and data exchange with peripheral devices.

Another characteristic of the MC68HC08KH12 is its low power mode capabilities, which allow it to enter a sleep state during periods of inactivity. This feature is essential in battery-powered applications, where minimizing power consumption is crucial for extending operational life.

Overall, the Freescale Semiconductor MC68HC08KH12 stands out as a reliable microcontroller that combines performance, flexibility, and power efficiency. Its extensive features and technologies enable engineers to design robust embedded systems that meet the demands of modern applications. As a result, the MC68HC08KH12 remains a valuable choice for developers seeking a highly functional yet cost-effective microcontroller solution.