14.5 IRQ Module During Break Interrupts

The system integration module (SIM) controls whether the IRQ1 latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. (See Section 7. System Integration Module (SIM).)

To allow software to clear the IRQ1 latch during a break interrupt, write a logic one to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect the latches during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero (its default state), writing to the ACK1 bit in the IRQ status and control register during the break state has no effect on the IRQ latch.

14.6 IRQ Status and Control Register (ISCR)

The IRQ Status and Control Register (ISCR) controls and monitors operation of the IRQ module. The ISCR has the following functions:

Shows the state of the IRQ1 flag

Clears the IRQ1 latch

Masks IRQ1 and interrupt request

Controls triggering sensitivity of the IRQ1/VPP interrupt pin

Address:

Read:

Write:

Reset:

$001E

 

 

 

 

 

 

 

Bit 7

6

5

4

3

2

1

Bit 0

 

 

 

 

 

 

 

 

0

0

0

0

IRQF1

0

IMASK1

MODE1

 

 

 

 

 

 

 

 

 

 

 

ACK1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

0

0

0

0

0

 

= Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14-2. IRQ Status and Control Register (ISCR)

MC68HC(7)08KH12 Rev. 1.1

Advance Information

 

 

Freescale Semiconductor

217

Page 217
Image 217
Freescale Semiconductor MC68HC08KH12 manual IRQ Module During Break Interrupts, IRQ Status and Control Register Iscr, 217

MC68HC08KH12 specifications

The Freescale Semiconductor MC68HC08KH12 is a versatile microcontroller that has gained popularity in various embedded systems applications. Part of the HC08 family, this microcontroller combines a robust architecture with comprehensive on-chip features, making it suitable for a wide range of applications ranging from industrial control to consumer electronics.

One of the main features of the MC68HC08KH12 is its 8-bit architecture, which provides an optimal balance between performance and power efficiency. It operates at clock speeds of up to 2 MHz, allowing for efficient execution of instructions while maintaining low power consumption. The microcontroller is designed to operate over a voltage range of 2.7 to 5.5 volts, making it adaptable to various system requirements.

The MC68HC08KH12 is equipped with 1 Kbyte of RAM and 12 Kbytes of ROM, which allows for substantial program and data storage. The on-chip memory helps reduce the need for external components, simplifying the design of embedded systems and enhancing reliability. With a wide range of I/O options, including 26 general-purpose I/O pins, the microcontroller provides flexibility in interfacing with sensors, actuators, and other devices.

In terms of technologies, the MC68HC08KH12 features an advanced instruction set that enhances programming efficiency. It supports basic arithmetic operations, bit manipulation, and control transfer instructions, making it suitable for a variety of computational tasks. The integrated timers, analog-to-digital converters, and serial communication interfaces, including UART, provide the necessary tools for real-time control and data exchange with peripheral devices.

Another characteristic of the MC68HC08KH12 is its low power mode capabilities, which allow it to enter a sleep state during periods of inactivity. This feature is essential in battery-powered applications, where minimizing power consumption is crucial for extending operational life.

Overall, the Freescale Semiconductor MC68HC08KH12 stands out as a reliable microcontroller that combines performance, flexibility, and power efficiency. Its extensive features and technologies enable engineers to design robust embedded systems that meet the demands of modern applications. As a result, the MC68HC08KH12 remains a valuable choice for developers seeking a highly functional yet cost-effective microcontroller solution.