If the argument is a name, the name must identify a variable containing a square matrix. In this case, the elements of the matrix are replaced by those of the identity matrix (complex if the original matrix is complex).

Access:

CREATE IDN

( Ø is the leftshift of the

5key).

 

MATRIX MAKE IDN

( ´is the leftshift of the

Pkey).

Input/Output:

 

 

 

 

 

 

 

 

 

 

 

 

 

Level 1/Argument 1

 

Level 1/Item 1

 

 

 

 

 

 

 

n

[[ Rmatrix identity ]]

 

 

[[ matrix ]]

[[ matrixidentity

]]

 

 

'name'

[[ matrixidentity

]]

See also:

CON

 

 

 

 

 

 

 

 

 

 

 

 

IDIV2

 

 

 

 

 

 

Type:

Command

 

 

 

 

Description:

For two integers, a and b, returns the integer part of a/b, and the remainder, r.

 

Access:

Arithmetic, INTEGER

 

 

 

 

Input:

Level 2/Argument 1: a.

 

 

 

 

 

Level 1/Argument 2: b.

 

 

 

 

Output:

Level 2/Item 1: The integer part of a/b.

 

 

 

 

 

Level 1/Item 2: The remainder.

 

 

 

 

Flags:

Numeric mode must not be set (flag –3 clear).

 

 

 

 

 

Radians mode must be set (flag –17 set).

 

 

 

 

Example:

Return the integer part and the remainder of 11632/864.

 

 

 

Command:

IDIV2(11632,864)

 

 

 

 

Result:

{13,400}

 

 

 

 

 

See also:

DIV2, IQUOT

 

 

 

 

 

 

 

 

 

 

 

IEGCD

 

 

 

 

 

 

Type:

Command

 

 

 

 

Description:

Given two integers x and y, returns three integers, a, b, and c, such that:

 

 

 

ax+by=c

 

 

 

 

 

where c is the GCD of x and y.

 

 

 

 

Access:

PARITH or Arithmetic, INTEGER

 

 

 

 

Input:

Level 2/Argument 1: x.

 

 

 

 

 

Level 1/Argument 2: y.

 

 

 

 

Output:

Level 3/Item 1: c.

 

 

 

 

 

Level 2/Item 2: a.

 

 

 

 

 

Level 1/Item 3: b.

 

 

 

 

 

Note the order, c is first.

 

 

 

 

Flags:

Exact mode must be set (flag –105 clear).

 

 

 

 

 

Numeric mode must not be set (flag –3 clear).

 

 

 

 

 

Radians mode must be set (flag –17 set).

 

 

 

 

Example:

Find a, b and c such that a18 + b24 = c, where c is the GCD of 18 and 24.

 

 

Command:

IEGCD(18,24)

 

 

 

 

Result:

{6,-1,1}

 

 

 

 

 

Full Command and Function Reference 3111

Page 231
Image 231
HP 48gII Graphing, 50g Graphing manual IDIV2, Iegcd, DIV2, Iquot, Ax+by=c