Object Size, continued

Object Type

 

Size (bytes)

 

 

 

Unit object

 

7.5 +

real magnitude

 

2.5 or 10.5

each prefix

 

6

each unit name

 

5 + number of characters

each ×, ^, or /

 

2.5

each exponent

 

2.5 or 10.5

Unquoted global or

 

3.5 + number of characters

local name

 

 

Vector

 

12.5 + 8 × number of elements

XLIB name

 

5.5

 

 

 

Symbolic Integration Patterns

This table lists the symbolic integration patterns used by the calculator. These are the integrands that the calculator can integrate symbolically.

φis a linear function of the variable of integration. The antiderivatives should be divided by the firstorder coefficient in φ to reduce the expression to its simplest form. Also, patterns beginning with 1 / match INV: for example, 1 /φ is the same as INV(φ).

Symbolic Integration

Pattern

Antiderivative

 

 

ACOS(φ)

φ×ACOS(φ)(1φ2)

ALOG(φ)

.434294481904×ALOG(φ)

ASIN(φ)

φ×ASIN(φ)+ (1φ2)

ATAN(φ)

φ×ATAN(φ)LN(1+φ2)/2

COS(φ)

SIN(φ)

1/(COS(φ)×SIN(φ))

LN(TAN(φ))

COSH(φ)

SINH(φ)

1/(COSH(φ)×SINH(φ))

LN(TANH(φ))

1/(COSH(φ)2)

TANH(φ)

EXP(φ)

EXP(φ)

EXPM(φ)

EXP(φ)

LN(φ)

φ×LN(φ)φ

LOG(φ)

.434294481904×φ×LN(φ)φ

SIGN(φ)

ABS(φ)

SIN(φ)

COS(φ)

1/(SIN(φ)×COS(φ))

LN(TAN(φ))

1/(SIN(φ)×TAN(φ))

INV(SIN(φ))

 

 

E2 Technical Reference

Page 624
Image 624
HP 50g Graphing, 48gII Graphing manual Symbolic Integration, Pattern Antiderivative, E2 Technical Reference