Flags:

Exact mode must be set (flag –105 clear).

 

Numeric mode must not be set (flag –3 clear).

 

Radians mode must be set (flag –17 set).

Example:

Find a Grœbner basis of the ideal polynomial generated by the polynomials:

 

x2 + 2xy2, xy + 2y3 – 1

Command:

GBASIS([X^2 + 2*X*Y^2, X*Y + 2*Y^3 – 1], [X,Y])

Result:

[X, 2*Y^3-1]

 

Note this is not the minimal Grœbner basis, as the leading coefficient of the second term is not 1;

 

the algorithm used avoids giving results with fractions.

See also:

GREDUCE

GCD

 

Type:

Function

Description:

Returns the greatest common divisor of two objects.

Access:

Arithmetic, POLY L

Input:

Level 2/Argument 1: An expression, or an object that evaluates to a number.

 

Level 1/Argument 2: An expression, or an object that evaluates to a number.

Output:

The greatest common divisor of the two objects.

Flags:

Exact mode must be set (flag –105 clear).

 

Numeric mode must not be set (flag –3 clear).

Example:

Find the greatest common divisor of 2805 and 99.

Command:

GCD(2805,99)

Result:

33

See also:

GCDMOD, EGCD, IEGCD, LCM

GCDMOD

 

Type:

Function

Description:

Finds the greatest common divisor of two polynomials modulo the current modulus.

Access:

Arithmetic, MODULO

Input:

Level 2/Argument 1: A polynomial expression.

 

Level 1/Argument 2: A polynomial expression.

Output:

The greatest common divisor of the two expressions modulo the current modulus.

Flags:

Exact mode must be set (flag –105 clear).

 

Numeric mode must not be set (flag –3 clear).

 

Radians mode must be set (flag –17 set).

Example:

Find the greatest common divisor of 2x^2+5 and 4x^25x, modulo 13.

Command:

GCDMOD(2X^2+5,4X^2-5X)

Result:

-(4X-5)

See also:

GCD

GET

Command

Type:

Description:

Get Element Command: Returns from the argument 1/level 2 array or list (or named array or list)

 

the real or complex number zget or object objget whose position is specified in argument 2/level 1.

 

For matrices, nposition is incremented in row order.

396 Full Command and Function Reference

Page 216
Image 216
HP 50g Graphing, 48gII Graphing manual Get, Gcdmod, Egcd, Iegcd, Lcm