G(x + 1) – G(x) = f(x)

where x is the specified variable.

Access: DERIV L

Input: Level 2/Argument 1: A function

Level 1/Argument 2: The variable to calculate the antiderivative with respect to.

Output: The discrete antiderivative of the function.

Flags: Exact mode must be set (flag –105 clear). Numeric mode must not be set (flag –3 clear). Radians mode must be set (flag –17 set).

Example: Obtain the discrete antiderivative with respect to the variable y of the expression: 2x2 y

Command: SIGMA(2*X-2*Y,Y)

Result: -(Y^2 –(2*X+1)*Y)

See also: SIGMAVX, RISCH

SIGMAVX

Type: Function

Description: Calculates the discrete antiderivative of a function f with respect to the current variable. This is a function G such that:

G(x + 1) – G(x) = f(x)

where x is the current variable.

Access: DERIV LL

Input: Level 1/Argument 1: A function.

Output: The discrete antiderivative of the function.

Flags: Exact mode must be set (flag –105 clear). Numeric mode must not be set (flag –3 clear). Radians mode must be set (flag –17 set).

Example: Obtain the discrete antiderivative with respect to the current variable x of the expression: 2x2 y

Command:

SIGMAVX(2*X-2*Y)

 

 

 

Result:

X^2 –(2*Y+1)*X

 

 

 

See also:

SIGMA, RISCH

 

 

 

SIGN

Function

 

 

 

Type:

 

 

 

Description:

Sign Function: Returns the sign of a real number argument, the sign of the numerical part of a

 

unit object argument, or the unit vector in the direction of a complex number argument.

 

For real number and unit object arguments, the sign is defined as +1 for positive arguments, –1

 

for negative arguments. In exact mode, the sign for argument 0 is undefined (?). In approximate

 

mode, the sign for argument 0 is 0. SIGN in the menu returns the sign of a number, while

 

SIGN in the …ß menu returns the unit vector of a complex number.

 

For a complex argument:

 

 

 

 

SIGN( x + iy) =

x

+

iy

 

--------------------x2+ y2

--------------------x2+ y2

 

 

 

Full Command and Function Reference 3223

Page 343
Image 343
HP 48gII Graphing, 50g Graphing manual Sigmavx, Sign, Access !ÖDERIV LL, SIGMA, Risch