Configuring IP

M = A number from 1 to the maximum number of load-sharing paths. This value increases by 1 until it reaches the maximum, then reverts to 1.

P= Number of equal-cost paths to destination network S = Selected path

For reference, the following table lists the path that the network-based IP load sharing algorithm will select for each combination of maximum number of paths and number of actual paths to the destination network. The software orders the available paths based on when they enter the IP route table. The first path to enter the table is path 1, and so on.

The rows with maximum path value 4 list the path selections that occur using the default maximum number of load sharing paths, which is four.

Table 6.7: Path Selection for Network-Based IP Load Sharing

Number of Paths

Maximum Paths

Path Counter Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

 

4

5

6

7

8

 

 

 

 

 

 

 

 

 

 

 

2

2

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2

1

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

2

1

2

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

2

1

2

 

1

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

2

1

2

 

1

2

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

8

2

1

2

 

1

2

1

2

1

 

 

 

 

 

 

 

 

 

 

 

3

2

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2

3

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2

3

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

2

3

1

 

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

2

3

1

 

2

3

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

2

3

1

 

2

3

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

8

2

3

1

 

2

3

1

2

3

 

 

 

 

 

 

 

 

 

 

 

4

2

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2

3

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2

3

4

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

2

3

4

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

2

3

4

 

1

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

2

3

4

 

1

2

3

4

 

 

 

 

 

 

 

 

 

 

 

 

 

8

2

3

4

 

1

2

3

4

1

 

 

 

 

 

 

 

 

 

 

 

6 - 55