Introduction

Table 1-4. PXA250 Applications Processor Pinout — Ballpad Number Order (Sheet 2 of 3)

Ball #

Signal

Ball #

Signal

Ball #

Signal

 

 

 

 

 

 

C6

VCCQ

H12

TCK

P2

MA[19]

 

 

 

 

 

 

C7

L_DD[2]/GPIO[60]

H13

TMS

P3

VCCN

 

 

 

 

 

 

C8

VSSQ

H14

GPIO[6]

P4

MA[25]

 

 

 

 

 

 

C9

BITCLK/GPIO[28]

H15

TDI

P5

MA[23]

 

 

 

 

 

 

C10

VCCQ

H16

TDO

P6

MD[24]

 

 

 

 

 

 

C11

VSSQ

J1

MA[7]

P7

MD[26]

 

 

 

 

 

 

C12

USB_P

J2

VSSN

P8

MD[27]

 

 

 

 

 

 

C13

VCCQ

J3

MA[6]

P9

nCS[2]/GPIO[78]

 

 

 

 

 

 

C14

VSSQ

J4

MD[18]

P10

MD[29]

 

 

 

 

 

 

C15

IRTXD/GPIO[47]

J5

MA[5]

P11

MD[12]

 

 

 

 

 

 

C16

VSS

J6

MA[4]

P12

MD[31]

 

 

 

 

 

 

D1

SDCLK[2]

J7

VCC

P13

nPOE/GPIO[48]

 

 

 

 

 

 

D2

SDCLK[0]

J8

VSS

P14

nPCE[1]/GPIO[52]

 

 

 

 

 

 

D3

RDnWR

J9

VSS

P15

VSSN

 

 

 

 

 

 

D4

VCCN

J10

VSSQ

P16

nPSKTSEL/GPIO[54]

 

 

 

 

 

 

D5

L_DD[10]/GPIO[68]

J11

GPIO[5]

R1

MA[18]

 

 

 

 

 

 

D6

L_DD[5]/GPIO[63]

J12

GPIO[4]

R2

VSSN

 

 

 

 

 

 

D7

L_DD[1]/GPIO[59]

J13

nRESET

R3

MA[20]

 

 

 

 

 

 

D8

L_LCLK/GPIO[75]

J14

VSSQ

R4

VSSN

 

 

 

 

 

 

D9

SSPTXD/GPIO[25]

J15

PLL_VCC

R5

MA[22]

 

 

 

 

 

 

D10

nACRESET

J16

PLL_VSS

R6

VSSN

 

 

 

 

 

 

D11

SCL

K1

MA[8]

R7

MD[25]

 

 

 

 

 

 

D12

PWM[1]/GPIO[17]

K2

MA[9]

R8

VSSN

 

 

 

 

 

 

D13

BTTXD/GPIO[43]

K3

MD[19]

R9

MD[10]

 

 

 

 

 

 

D14

MMCMD

K4

VCCN

R10

VSSN

 

 

 

 

 

 

D15

VCCQ

K5

MA[10]

R11

MD[30]

 

 

 

 

 

 

D16

VSSQ

K6

MA[11]

R12

VSSN

 

 

 

 

 

 

E1

nSDRAS

K7

VSSQ

R13

nCS[4]/GPIO[80]

 

 

 

 

 

 

E2

VSSN

K8

VCC

R14

VSSN

 

 

 

 

 

 

E3

SDCKE[1]

K9

VSSQ

R15

nPIOW/GPIO[51]

 

 

 

 

 

 

E4

SDCKE[0]

K10

VCC

R16

nPCE[2]/GPIO[53]

 

 

 

 

 

 

E5

L_DD[6]/GPIO[64]

K11

nRESET_OUT

T1

VSS

 

 

 

 

 

 

E6

L_DD[4]/GPIO[62]

K12

nBATT_FAULT

T2

VCCN

 

 

 

 

 

 

E7

L_DD[0]/GPIO[58]

K13

nVDD_FAULT

T3

MD[23]

 

 

 

 

 

 

E8

L_FCLK/GPIO[74]

K14

GPIO[3]

T4

MA[21]

 

 

 

 

 

 

E9

SSPSFRM/GPIO[24]

K15

PXTAL

T5

MA[24]

 

 

 

 

 

 

E10

SDATA_IN0/GPIO[29]

K16

PEXTAL

T6

MD[3]

 

 

 

 

 

 

E11

SYNC/GPIO[31]

L1

MA[12]

T7

MD[5]

 

 

 

 

 

 

PXA250 and PXA210 Applications Processors Design Guide

1-13

Page 21
Image 21
Intel PXA250 and PXA210 TMS Vccn Vssq, GPIO6, BITCLK/GPIO28, Tdo, Usbp Vssn, IRTXD/GPIO47, SDCLK2 VCC, SDCLK0 VSS, GPIO5

PXA250 and PXA210 specifications

The Intel PXA250 and PXA210 processors, part of the Intel XScale architecture, were introduced in the early 2000s, targeting mobile and embedded applications. They are known for their low power consumption, high performance, and advanced multimedia capabilities, making them suitable for a wide range of devices, including PDAs, smartphones, and other portable computing devices.

The PXA250, which operates at clock speeds ranging from 400 MHz to 624 MHz, features a superscalar architecture that allows it to issue multiple instructions per clock cycle. This enhances the overall performance for demanding applications while maintaining low power usage. It supports a variety of peripheral interfaces, including USB, Ethernet, and various memory types, which contributes to its versatility in different product designs.

One of the key technologies in the PXA250 is the integrated Intel Smart Repeat Technology, which optimizes data processing, thereby reducing the amount of power consumed during operation. This feature is particularly important for battery-powered devices, as it extends the overall battery life, allowing for longer usage times in mobile environments. Additionally, the PXA250 includes a dedicated graphics acceleration unit, which enables enhanced graphics and multimedia performance suited to modern applications at the time.

In contrast, the PXA210 is a more entry-level processor, aimed at cost-sensitive applications. Operating at lower clock speeds, typically around 200 MHz to 400 MHz, it forgoes some of the advanced performance features of the PXA250 while still offering a good balance of performance and power efficiency. The PXA210 is less complex, making it suitable for simpler devices that do not require the extensive capabilities of the PXA250.

Both processors utilize the Intel XScale architecture, which is based on the ARM instruction set. They are built on a 0.13-micron process technology, enabling higher density and lower power consumption compared to their predecessors. With integrated memory controllers and bus interfaces, they facilitate efficient data handling and connectivity options.

In summary, both the Intel PXA250 and PXA210 processors played a crucial role in the evolution of mobile computing by providing powerful processing capabilities with energy efficiency. Their features and technologies enabled device manufacturers to create innovative products that catered to the growing demand for portable devices during that era.