ABSWAP Subroutine (address $F437)

Purpose: To take the absolute value of FP1 and then swap FP1 with FP2. Note that two sequential calls to ABSWAP will take the absolute values of both FP1 and FP2 in preparation for a multiply or divide.

Entry: FP1 and FP2 contain floating point values.

Exit: The absolute value of the original FP1 contents are in FP2 and the original FP2 contents are in FP1. The least significant bit of SIGN is complemented if a negation takes place (if the original FP1 contents are negative) by means of an increment. SCR and E are used. The A-REG contains a copy of X2, the X-REG is cleared, and the Y-REG is not altered.

RTAR Subroutine (address $F47D)

Purpose: To shift M1 right one bit position while incrementing X1 to compensate for scale. This is roughly the opposite of the NORM subroutine.

Entry: A normalized or unnormalized floating point value is in FP1.

Exit: The 6-byte field MANT1 and E is shifted right one bit arithmetically and X1 is incremented by 1 to retain proper scale. The sign bit of MANT1 (MSB of M1) is unchanged. FP2, SIGN, and SCR are not disturbed. The A-REG contains the least significant byte of E (E+2), the X-REG is cleared, and the Y-REG is not disturbed.

Caution: If X1 increments of 0 (overflow) then an exit to location $3F5 is taken, the A-REG contains the high-order MANT1 byte, M1 and X1 is cleared. FP2, SIGN, SCR, and the X- and Y-REGs are not disturbed.

Uses: RTLOG

Example: Prior to calling RTAR, FP1 contains the normalized value -7.

 

_____

 

_____

 

_____

 

_____

 

 

FP1

$83

$A0

0

0

(-7)

_____

_____

_____

_____

 

X1 M1

After calling RTAR, FP1 contains the unnormalized value -7 (note that precision is lost off the low-order end of M1).

 

_____

 

_____

 

_____

 

_____

 

 

FP1

$84

$D0

0

0

(-7)

_____

_____

_____

_____

 

 

X1

 

M1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 78
Image 78
Apple II manual

II specifications

The Apple II, launched in April 1977, was one of the first highly successful mass-produced microcomputer products. It marked a significant leap in personal computing, setting standards for future developments in the industry. Created by Steve Wozniak and Steve Jobs, the Apple II differentiated itself with its user-friendly design, appealing aesthetics, and robust capabilities.

One of the standout features of the Apple II was its open architecture, which allowed users to expand and enhance the computer's functionality. This design enabled hundreds of third-party hardware and software developers to contribute to its ecosystem, resulting in an array of peripherals, including printers, modems, and storage devices. The Apple II utilized a MOS Technology 6502 microprocessor running at a clock speed of 1 MHz. Initially equipped with 4 KB of RAM, the machine could be expanded to 48 KB, accommodating more complex applications and programs.

The Apple II was also notable for its colorful graphics. It was one of the first computers to support color display, offering a 6-color palette with a resolution of 280x192 pixels in 16 colors when using its Color Graphics Card. This feature significantly enhanced the visual appeal of games and educational software developed for the platform, making computing more accessible and entertaining for various audiences.

Apple's commitment to user experience was evident in the design of the machine. It featured an integrated keyboard and a plastic case, which was both durable and visually appealing. The self-contained design included drive bays for floppy disk drives, allowing for quicker data access than traditional tape drives. It also supported audio output, enabling sound effects and music, a novelty at the time.

The introduction of the Apple DOS operating system further underscored the machine's capabilities. DOS streamlined file management and made it easier for users to navigate and manage their data. The combination of hardware and software positioned the Apple II as an educational tool and a gaming platform, fostering a vibrant software ecosystem.

The Apple II family continued to evolve, with variations like the Apple II+, IIe, and IIgs being introduced over the years. These iterations brought enhancements in memory, processing power, and graphics capabilities. The legacy of the Apple II endures, not only as a foundational product in personal computing but also as a symbol of innovation that paved the way for future advancements in technology. Its impact is still felt today, as it inspired countless developers and shaped the trajectory of the computer industry.