Address Space

1.4.3Peripheral Modules

Peripheral modules are mapped into the address space. The address space from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules should be accessed with word instructions. If byte instructions are used, only even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to 0FFh is reserved for 8-bit peripheral modules. These modules should be accessed with byte instructions. Read access of byte modules using word instructions results in unpredictable data in the high byte. If word data is written to a byte module only the low byte is written into the peripheral register, ignoring the high byte.

1.4.4Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located in the lower 16 bytes of the address space, and are organized by byte. SFRs must be accessed using byte instructions only. See the device-specific data sheets for applicable SFR bits.

1.4.5Memory Organization

Bytes are located at even or odd addresses. Words are only located at even addresses as shown in Figure 1−3. When using word instructions, only even addresses may be used. The low byte of a word is always an even address. The high byte is at the next odd address. For example, if a data word is located at address xxx4h, then the low byte of that data word is located at address xxx4h, and the high byte of that word is located at address xxx5h.

Figure 1−3. Bits, Bytes, and Words in a Byte -Organized Memory

15

14

. . Bits . .

9

8

 

 

 

 

 

7

6

. . Bits . .

1

0

 

 

 

 

 

 

 

Byte

 

 

 

 

 

 

 

 

 

Byte

 

 

Word (High Byte)

Word (Low Byte)

xxxAh

xxx9h

xxx8h

xxx7h

xxx6h

xxx5h

xxx4h

xxx3h

Introduction1-5

Page 17
Image 17
Texas Instruments MSP430x1xx manual Peripheral Modules, Special Function Registers SFRs, Memory Organization

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.