Texas Instruments MSP430x1xx manual Programming Flash Memory via Jtag

Models: MSP430x1xx

1 432
Download 432 pages 41.81 Kb
Page 146
Image 146

Flash Memory Operation

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface requires four signals (5 signals on 20- and 28-pin devices), ground and optionally VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables the JTAG port and is not reversible. Further access to the device via JTAG is not possible For more details see the Application report Programming a Flash-Based MSP430 Using the JTAG Interface at www.ti.com/sc/msp430.

Programming Flash Memory via the Bootstrap loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables users to read or program the flash memory or RAM using a UART serial interface. Access to the MSP430 flash memory via the BSL is protected by a 256-bit, user-defined password. For more details see the Application report Features of the MSP430 Bootstrap Loader at www.ti.com/sc/msp430.

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for in-system and external custom programming solutions as shown in Figure 5−12. The user can choose to provide data to the MSP430 through any means available (UART, SPI, etc.). User-developed software can receive the data and program the flash memory. Since this type of solution is developed by the user, it can be completely customized to fit the application needs for programming, erasing, or updating the flash memory.

Figure 5−12. User-Developed Programming Solution

Host

MSP430

 

Flash Memory

Commands, data, etc.

UART,

 

Px.x,

CPU executes

SPI,

user software

etc.

 

 

Read/write flash memory

5-16

Flash Memory Controller

Page 146
Image 146
Texas Instruments MSP430x1xx manual Programming Flash Memory via Jtag, 12. User-Developed Programming Solution

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.