Texas Instruments MSP430x1xx manual Changing the Period Register TBCL0

Models: MSP430x1xx

1 432
Download 432 pages 41.81 Kb
Page 240
Image 240

Timer_B Operation

Up Mode

The up mode is used if the timer period must be different from TBR(max) counts. The timer repeatedly counts up to the value of compare latch TBCL0, which

defines the period, as shown in Figure 12−2. The number of timer counts in the period is TBCL0+1. When the timer value equals TBCL0 the timer restarts counting from zero. If up mode is selected when the timer value is greater than TBCL0, the timer immediately restarts counting from zero.

Figure 12−2. Up Mode

TBR(max)

TBCL0

0h

The TBCCR0 CCIFG interrupt flag is set when the timer counts to the TBCL0 value. The TBIFG interrupt flag is set when the timer counts from TBCL0 to zero. Figure 11−3 shows the flag set cycle.

Figure 12−3. Up Mode Flag Setting

Timer Clock

 

 

 

 

 

Timer

TBCL0−1 TBCL0

0h

1h

TBCL0−1 TBCL0

0h

Set TBIFG

 

 

 

 

 

Set TBCCR0 CCIFG

Changing the Period Register TBCL0

When changing TBCL0 while the timer is running and when the TBCL0 load mode is immediate, if the new period is greater than or equal to the old period, or greater than the current count value, the timer counts up to the new period. If the new period is less than the current count value, the timer rolls to zero. However, one additional count may occur before the counter rolls to zero.

12-6Timer_B

Page 240
Image 240
Texas Instruments MSP430x1xx manual Changing the Period Register TBCL0

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.