Texas Instruments MSP430x1xx 19.2.5 DAC12 Output Amplifier Offset Calibration, 4. Negative Offset

Models: MSP430x1xx

1 432
Download 432 pages 41.81 Kb
Page 425
Image 425

DAC12 Operation

19.2.5 DAC12 Output Amplifier Offset Calibration

The offset voltage of the DAC12 output amplifier can be positive or negative. When the offset is negative, the output amplifier attempts to drive the voltage negative, but cannot do so. The output voltage remains at zero until the DAC12 digital input produces a sufficient positive output voltage to overcome the negative offset voltage, resulting in the transfer function shown in Figure 19−4.

Figure 19−4. Negative Offset

Output Voltage

 

0

 

Negative Offset

DAC Data

When the output amplifier has a positive offset, a digital input of zero does not result in a zero output voltage. The DAC12 output voltage reaches the maximum output level before the DAC12 data reaches the maximum code. This is shown in Figure 19−5.

Figure 19−5. Positive Offset

Vcc

 

Output Voltage

 

0

 

DAC Data

Full-Scale Code

The DAC12 has the capability to calibrate the offset voltage of the output amplifier. Setting the DAC12CALON bit initiates the offset calibration. The calibration should complete before using the DAC12. When the calibration is complete, the DAC12CALON bit is automatically reset. The DAC12AMPx bits should be configured before calibration. For best calibration results, port and CPU activity should be minimized during calibration.

DAC12 19-7

Page 425
Image 425
Texas Instruments MSP430x1xx manual 19.2.5 DAC12 Output Amplifier Offset Calibration, 4. Negative Offset

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.