8.2 DMA Operation

The DMA controller is configured with user software. The setup and operation of the DMA is discussed in the following sections.

8.2.1DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for each DMA channel is independently configurable. For example, channel 0 may transfer between two fixed addresses, while channel 1 transfers between two blocks of addresses. The addressing modes are shown in Figure 8−2. The addressing modes are:

-Fixed address to fixed address

-Fixed address to block of addresses

-Block of addresses to fixed address

-Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and DMADSTINCRx control bits. The DMASRCINCRx bits select if the source address is incremented, decremented, or unchanged after each transfer. The DMADSTINCRx bits select if the destination address is incremented, decremented, or unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte. When transferring word-to-byte, only the lower byte of the source-word transfers. When transferring byte-to-word, the upper byte of the destination-word is cleared when the transfer occurs.

Figure 8−2. DMA Addressing Modes

DMA

Controller

Address Space

DMA

Controller

Address Space

Fixed Address To Fixed Address

Fixed Address To Block Of Addresses

DMA

Controller

Address Space

DMA

Controller

Address Space

Block Of Addresses To Fixed Address

Block Of Addresses To Block Of Addresses

8-4

Page 172
Image 172
Texas Instruments MSP430x1xx manual DMA Operation, DMA Addressing Modes

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.