Timer_B Operation

12.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and operation of Timer_B is discussed in the following sections.

12.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TBR, increments or decrements (depending on mode of operation) with each rising edge of the clock signal. TBR can be read or written with software. Additionally, the timer can generate an interrupt when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant operating conditions.

When the TBCLK is asynchronous to the CPU clock, any read from TBR should occur while the timer is not operating or the results may be unpredictable. Alternatively, the timer may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to TBR will take effect immediately.

TBR Length

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the

CNTLx bits. The maximum count value, TBR(max), for the selectable lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data written to the TBR

register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

The timer clock TBCLK can be sourced from ACLK, SMCLK, or externally via TBCLK or INCLK. The clock source is selected with the TBSSELx bits. The selected clock source may be passed directly to the timer or divided by 2,4, or 8, using the IDx bits. The TBCLK divider is reset when TBCLR is set.

12-4Timer_B

Page 238
Image 238
Texas Instruments MSP430x1xx manual TimerB Operation, 12.2.1 16-Bit Timer Counter, TBR Length

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.