Texas Instruments MSP430x1xx manual 19.1 DAC12 Introduction

Models: MSP430x1xx

1 432
Download 432 pages 41.81 Kb
Page 420
Image 420

DAC12 Introduction

19.1 DAC12 Introduction

The DAC12 module is a 12-bit, voltage output DAC. The DAC12 can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous update operation.

Features of the DAC12 include:

-12-bit monotonic output

-8- or 12-bit voltage output resolution

-Programmable settling time vs power consumption

-Internal or external reference selection

-Straight binary or 2’s compliment data format

-Self-calibration option for offset correction

-Synchronized update capability for multiple DAC12s

Note: Multiple DAC12 Modules

Some devices may integrate more than one DAC12 module. In the case where more than one DAC12 is present on a device, the multiple DAC12 modules operate identically.

Throughout this chapter, nomenclature appears such as DAC12_xDAT or DAC12_xCTL to describe register names. When this occurs, the x is used to indicate which DAC12 module is being discussed. In cases where operation is identical, the register is simply referred to as DAC12_xCTL.

The block diagram of the two DAC12 modules in the MSP430F15x/16x devices is shown in Figure 19−1.

19-2 DAC12

Page 420
Image 420
Texas Instruments MSP430x1xx manual 19.1 DAC12 Introduction

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.