Texas Instruments MSP430x1xx manual 12. Slave Receiver

Models: MSP430x1xx

1 432
Download 432 pages 41.81 Kb
Page 328
Image 328

I2C Module Operation

Figure 15−12. Slave Receiver

IDLE

No

 

START

 

Detected?

 

2

 

Yes

Yes

STTIFG Is Set

 

I2CBUSY Is Set

 

RESTART

Detected ?

From Slave

Transmit Mode

4 x I2CPSC

 

I2CBB Is Set

XA = 1

XA = 0

8 x SCL

8 x SCL

Receive Slave

Receive Slave

Address Bits 9−8

Address Bits 6−0

with R/W = 0

with R/W = 0

No

No

Match

Match

 

2

Matched I2COA

Matched I2COA

 

1 x SCL

1 x SCL

Send

Send

Acknowledge

Acknowledge

8 x SCL

No

Match

Receive Slave

OAIFG Set If Not

No

8 x SCL

Receive Data

Low Byte

From Master

1 x SCL

Send

Acknowledge

8 x SCL Receive Data

High Byte

From Master

1 x SCL

Send

Acknowledge

1

No

I2CWORD=0

Byte Mode

Address Bits 7−0

Matched I2COA

1 x SCL

Send

Acknowledge

RESTART

Stop State?

Yes

4 x I2CPSC

I2CBB Is Cleared

1 x I2CPSC

I2CBUSY Is

Cleared

IDLE

15-14USART Peripheral Interface, I2C Mode

Page 328
Image 328
Texas Instruments MSP430x1xx manual 12. Slave Receiver

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.