Texas Instruments MSP430x1xx manual Receive-Start Edge Detect Operation

Models: MSP430x1xx

1 432
Download 432 pages 41.81 Kb
Page 279
Image 279

USART Operation: UART Mode

Receive-Start Edge Detect Operation

The URXSE bit enables the receive start-edge detection feature. The recommended usage of the receive-start edge feature is when BRCLK is sourced by the DCO and when the DCO is off because of low-power mode operation. The ultra-fast turn-on of the DCO allows character reception after the start edge detection.

When URXSE, URXIEx and GIE are set and a start edge occurs on URXDx, the internal signal URXS will be set. When URXS is set, a receive interrupt request is generated but URXIFGx is not set. User software in the receive interrupt service routine can test URXIFGx to determine the source of the interrupt. When URXIFGx = 0 a start edge was detected and when URXIFGx = 1 a valid character (or break) was received.

When the ISR determines the interrupt request was from a start edge, user software toggles URXSE, and must enable the BRCLK source by returning from the ISR to active mode or to a low-power mode where the source is active. If the ISR returns to a low-power mode where the BRCLK source is inactive, the character will not be received. Toggling URXSE clears the URXS signal and re-enables the start edge detect feature for future characters. See chapter System Resets, Interrupts, and Operating Modes for information on entering and exiting low-power modes.

The now active BRCLK allows the USART to receive the balance of the character. After the full character is received and moved to UxRXBUF, URXIFGx is set and an interrupt service is again requested. Upon ISR entry, URXIFGx = 1 indicating a character was received. The URXIFGx flag is cleared when user software reads UxRXBUF.

;Interrupt handler for start condition and

;Character receive. BRCLK = DCO.

U0RX_Int

BIT.B

#URXIFG0,&IFG2

; Test URXIFGx to determine

 

JNE

ST_COND

; If start or character

 

MOV.B

&UxRXBUF,dst

; Read buffer

 

...

 

;

 

RETI

 

;

ST_COND

BIC.B

#URXSE,&U0TCTL

; Clear URXS signal

 

BIS.B

#URXSE,&U0TCTL

; Re-enable edge detect

 

BIC

#SCG0+SCG1,0(SP) ; Enable BRCLK = DCO

 

RETI

 

;

Note: Break Detect With Halted UART Clock

When using the receive start-edge detect feature a break condition cannot be detected when the BRCLK source is off.

USART Peripheral Interface, UART Mode

13-19

Page 279
Image 279
Texas Instruments MSP430x1xx manual Receive-Start Edge Detect Operation

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.