Texas Instruments MSP430x1xx manual 5 P1 and P2 Interrupts, Interrupt Flag Registers P1IFG, P2IFG

Models: MSP430x1xx

1 432
Download 432 pages 41.81 Kb
Page 197
Image 197

Digital I/O Operation

9.2.5P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector, and all P2 pins source a different single interrupt vector. The PxIFG register can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit and the GIE bit are set. Each PxIFG flag must be reset with software. Software can also set each PxIFG flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P2OUT, or P2DIR can result in setting the corresponding P1IFG or P2IFG flags.

Note: Length of I/O Pin Interrupt Event

Any external interrupt event should be at least 1.5 times MCLK or longer, to ensure that it is accepted and the corresponding interrupt flag is set.

Digital I/O

9-5

Page 197
Image 197
Texas Instruments MSP430x1xx manual 5 P1 and P2 Interrupts, Interrupt Flag Registers P1IFG, P2IFG

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.