USART Operation: UART Mode

Receive-Start Edge Detect Conditions

When URXSE = 1, glitch suppression prevents the USART from being accidentally started. Any low-level on URXDx shorter than the deglitch time tτ (approximately 300 ns) will be ignored by the USART and no interrupt request will be generated as shown in Figure 13−12. See the device-specific datasheet for parameters.

Figure 13−12. Glitch Suppression, USART Receive Not Started

URXDx

URXS

tτ

When a glitch is longer than tτ, or a valid start bit occurs on URXDx, the USART receive operation is started and a majority vote is taken as shown in Figure 13−13. If the majority vote fails to detect a start bit the USART halts character reception.

If character reception is halted, an active BRCLK is not necessary. A time-out period longer than the character receive duration can be used by software to indicate that a character was not received in the expected time and the software can disable BRCLK.

Figure 13−13. Glitch Suppression, USART Activated

Majority Vote Taken

URXDx

URXS

tτ

13-20USART Peripheral Interface, UART Mode

Page 280
Image 280
Texas Instruments MSP430x1xx manual 12. Glitch Suppression, Usart Receive Not Started

MSP430x1xx specifications

The Texas Instruments MSP430x1xx series is a family of ultra-low-power microcontrollers that are highly regarded in the embedded systems community for their versatility and performance. Designed for applications ranging from portable instrumentation to low-power industrial devices, the MSP430x1xx combines flexibility and efficiency with advanced features tailored for energy-sensitive applications.

One of the standout characteristics of the MSP430x1xx is its ultra-low-power operation. This series offers several low-power modes that can significantly extend battery life in portable devices. The microcontroller can be in active mode, low-power mode, or even in a deep sleep state, allowing developers to optimize power consumption based on the application's requirements. In fact, some configurations can operate at just a few microamps, making it ideal for battery-operated devices.

Another key feature is the 16-bit RISC architecture that provides powerful processing capabilities while maintaining a low power profile. The MSP430x1xx series supports a maximum clock speed of 16 MHz, allowing for efficient task execution while consuming minimal energy. This architecture ensures that programs run smoothly while the microcontroller remains energy efficient.

The MSP430x1xx is equipped with various integrated peripherals, including analog-to-digital converters (ADCs), timers, and communication interfaces like UART, SPI, and I2C. The inclusion of a powerful ADC enables the microcontroller to handle sensor readings with high accuracy, making it suitable for applications like environmental monitoring and medical devices. The integrated timers provide essential functionality for real-time applications, allowing for event-driven programming and precise timing control.

Memory options in the MSP430x1xx series are also robust, with configurations offering flash memory sizes from 1 KB to 64 KB. This flexibility allows developers to choose the optimal memory size for their specific applications, accommodating a wide range of requirements.

Additionally, the MSP430x1xx microcontrollers are designed with a wide operating voltage range, typically from 1.8V to 3.6V, making them compatible with various power sources and further enhancing their usability in diverse applications.

In summary, the Texas Instruments MSP430x1xx series of microcontrollers is an excellent choice for developers seeking low-power, high-performance solutions for embedded applications. With an efficient architecture, a rich set of peripherals, and flexible memory options, these microcontrollers are positioned to meet the growing demands of modern electronic designs, particularly in battery-powered and energy-sensitive applications.