Texas Instruments MSP50C614 manual ±12. Classes and Opcode Definition

Models: MSP50C614

1 414
Download 414 pages 24.44 Kb
Page 117
Image 117

Instruction Classification

Table 4±12. Classes and Opcode Definition

Bit

16

15

14

 

13

 

12

11

10

9

 

8

7

 

6

 

 

5

4

 

3

2

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 1a

0

0

 

C1a

 

~A~

next A

 

An

 

 

am

 

 

 

Rx

 

 

pm

Class 1b

0

1

 

 

 

C1b

 

s

 

An

 

 

am

 

 

 

Rx

 

 

pm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 2a

1

0

1

 

0

 

 

C2a

 

 

An

 

 

 

 

 

 

imm8

 

 

 

 

Class 2b

1

1

1

 

0

 

0

next A

 

An

 

 

C2b

 

0

 

0

1

 

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 3

1

1

1

 

0

 

0

next A

 

An

 

 

 

C3

 

 

 

0

 

A~²

~A

Class 4a

1

1

1

 

1

 

0

C4a

 

R

 

 

 

 

am

 

 

 

Rx

 

 

pm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 4b

1

0

1

 

1

 

C4b

k4

k3

 

k2

k7

 

k6

 

k5

 

 

R

 

 

k1

k0

Class 4c

1

1

1

 

1

 

1

1

1

0

 

0

0

 

C4c

 

 

 

R

 

 

x

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 4d

1

1

1

 

1

 

1

1

1

0

 

0

1

 

C4d

 

 

 

R

 

 

x

x

Class 5

1

1

0

 

1

 

 

 

C5

 

 

 

 

 

am

 

 

 

Rx

 

 

pm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 6a

1

1

0

 

0

 

C6a

 

port4

 

 

 

 

am

 

 

 

Rx

 

 

pm

Class 6b

1

1

1

 

0

 

1

1

s

 

An

 

 

 

 

 

port6

 

 

 

 

C6b

~A~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 7a

1

1

1

 

1

 

1

1

1

0

 

1

 

 

 

 

 

 

vector8

 

 

 

 

Class 7b

1

0

0

 

0

 

0

0

Not

 

 

 

cc

 

 

 

 

 

 

 

rx

 

 

pm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JMP *An

1

0

0

 

0

 

1

0

x

 

An

x

 

x

 

 

x

x

 

x

x

 

x

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 7c

1

0

0

 

0

 

0

1

Not

 

 

 

cc

 

 

 

 

 

x

 

x

x

 

x

x

CALL *An

1

0

0

 

0

 

1

1

x

 

An

x

 

x

 

 

x

x

 

x

x

 

x

x

Class 8a

1

0

0

 

1

 

1

flg

n

 

 

C8a

 

 

 

 

 

 

flagadrs

 

 

 

g/r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 8b

1

0

0

 

1

 

0

flg

Not

 

 

 

cc

 

 

 

 

 

 

 

Rx

 

 

C8b

C8b

Class 9a

1

1

1

 

0

 

1

0

0

 

An

C9a

 

 

0

 

 

Rx

 

 

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 9b

1

1

1

 

1

 

1

1

0

 

C9a

 

 

 

 

 

 

 

k

 

 

 

 

Class 9c

1

1

1

 

1

 

1

0

1

 

An

0

C9c

 

 

x

 

 

 

imm5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 9d

1

1

1

 

1

 

1

1

1

1

 

0

 

 

C9d

 

 

0

0

 

0

0

ENDLOOP n

1

1

1

 

1

 

1

1

1

1

 

0

0

 

0

 

 

0

1

 

0

0

 

0

n

NOP

1

1

1

 

1

 

1

1

1

1

 

1

1

 

1

 

 

1

1

 

1

1

 

1

1

²Meaning of this bit depends on what class 3 instruction is used.

4.4.1Class 1 Instructions: Memory and Accumulator Reference

This class of instructions controls execution between data memory and the accumulator block. In addition to the explicit opcode field that specifies an arithmetic operation, an eight bit data memory addressing mode reference field (am, Rx, pm i.e., adrs field) controls the addressing of one input operand, and a 4 bit field (An and next A in class 1a) or 2 bit field (An in class 1b) selects an accumulator location as the other input operand. The results are written to the addressed accumulator location (or to the offset accumulator in class 1a if ~A bit = 1). In addition, each instruction can be treated as a single word length operation or as a string, depending on the string control encoded in the op code (s = 1 in class 1b and An = 11 binary in class 1a).

Assembly Language Instructions

4-25

Page 117
Image 117
Texas Instruments MSP50C614 ±12. Classes and Opcode Definition, Class 1 Instructions Memory and Accumulator Reference

MSP50C614 specifications

The Texas Instruments MSP50C614 is a microcontroller that belongs to the MSP430 family, renowned for its low power consumption and versatile functionality. Primarily designed for embedded applications, this microcontroller is favored in various industries, including consumer electronics, industrial automation, and healthcare devices.

One of the standout features of the MSP50C614 is its ultra-low power technology, which enables it to operate in various power modes. This makes it ideal for battery-powered applications, where energy efficiency is crucial. The MSP430 architecture allows for a flexible power management system, ensuring that energy is conserved while providing robust performance.

The MSP50C614 is equipped with a 16-bit RISC CPU that delivers high performance while maintaining low power usage. With a maximum clock frequency of 16 MHz, it can execute most instructions in a single cycle, resulting in swift operation and responsive performance. This microcontroller also comes with a generous flash memory capacity, allowing developers to store large amounts of code and data conveniently.

In terms of peripherals, the MSP50C614 is highly versatile. It features a range of digital and analog input/output options, including multiple timers, GPIO ports, and various communication interfaces like UART, SPI, and I2C. This extensive set of peripherals allows for seamless integration with other components and simplifies the design of complex systems.

The integrated 12-bit Analog-to-Digital Converter (ADC) stands out as a valuable characteristic of the MSP50C614. This feature enables the microcontroller to convert physical analog signals into digital data, making it particularly useful for sensing applications and real-time monitoring.

Another noteworthy technology employed in the MSP50C614 is its support for low-voltage operations. With a broad supply voltage range, this microcontroller can function efficiently in diverse environments and is suitable for low-power applications, enhancing its practicality.

Moreover, Texas Instruments provides software support in the form of Code Composer Studio and various libraries that make it easier for developers to program and utilize the MSP50C614 effectively.

In summary, the Texas Instruments MSP50C614 microcontroller is a powerful, low-power solution equipped with the features and technologies necessary for efficient operation in a wide array of applications. Its blend of performance, flexibility, and energy efficiency makes it a popular choice among engineers and designers looking to create innovative, sustainable designs in the rapidly evolving tech landscape.