Computation Unit

2.2 Computation Unit

The computational unit (CU) is comprised of a (17-bit by 17-bit) Booth's algorithm multiplier and a 16-bit arithmetic logic unit (ALU). The block diagram of the CU is shown in Figure 2±2. The multiplier block is served by 4 system registers: a 16-bit multiplier register (MR), a 16-bit write-only multiplicand register, a 16-bit high word product register (PH), and a 4-bit shift value register (SV). The output of the ALU is stored in one 16-bit accumulator from among the 32 which compose the accumulator-register block. The accumulator register block can supply either one operand to the ALU (addressed accumulator register or its offset register) or two operands to the ALU (both the addressed register and its offset).

2.2.1Multiplier

The multiplier executes a 17-bit by 17-bit 2s complement multiply and multiply-accumulate in a single instruction cycle. The sign bit within each operand is bit 16, and its value extends from bit 0 (LSB) to bit 15 (MSB). The sign bit for either operand (multiplier or multiplicand) can assume a positive value (zero) or a value equal to the MSB (bit 15). In assuming zero, the extra bit supports unsigned multiplication. In assuming the value of bit 15, the extra bit supports signed multiplication. Table 2±1 shows the greater magnitude achievable when using unsigned multiplication (65535 as opposed to 32767).

Table 2±1. Signed and Unsigned Integer Representation

Unsigned

 

Signed

 

 

 

 

Decimal

Hex

Decimal

Hex

65535

0xFFFF

1

0xFFFF

32768

0x8000

32768

0x8000

32767

0x7FFF

32767

0x7FFF

0

0x0000

0

0x0000

 

 

 

 

During multiplication, the lower word (LSB) of the resulting product, product low, is multiplexed to the ALU. Product low is either loaded to or arithmetically combined with an accumulator register. These steps are performed within the same instruction cycle. Refer to Figure 2±3. At the end of the current execution cycle, the upper word (MSB) of the product is latched into the product high register (PH).

MSP50C614 Architecture

2-5

Page 35
Image 35
Texas Instruments MSP50C614 manual Computation Unit, Multiplier, ±1. Signed and Unsigned Integer Representation

MSP50C614 specifications

The Texas Instruments MSP50C614 is a microcontroller that belongs to the MSP430 family, renowned for its low power consumption and versatile functionality. Primarily designed for embedded applications, this microcontroller is favored in various industries, including consumer electronics, industrial automation, and healthcare devices.

One of the standout features of the MSP50C614 is its ultra-low power technology, which enables it to operate in various power modes. This makes it ideal for battery-powered applications, where energy efficiency is crucial. The MSP430 architecture allows for a flexible power management system, ensuring that energy is conserved while providing robust performance.

The MSP50C614 is equipped with a 16-bit RISC CPU that delivers high performance while maintaining low power usage. With a maximum clock frequency of 16 MHz, it can execute most instructions in a single cycle, resulting in swift operation and responsive performance. This microcontroller also comes with a generous flash memory capacity, allowing developers to store large amounts of code and data conveniently.

In terms of peripherals, the MSP50C614 is highly versatile. It features a range of digital and analog input/output options, including multiple timers, GPIO ports, and various communication interfaces like UART, SPI, and I2C. This extensive set of peripherals allows for seamless integration with other components and simplifies the design of complex systems.

The integrated 12-bit Analog-to-Digital Converter (ADC) stands out as a valuable characteristic of the MSP50C614. This feature enables the microcontroller to convert physical analog signals into digital data, making it particularly useful for sensing applications and real-time monitoring.

Another noteworthy technology employed in the MSP50C614 is its support for low-voltage operations. With a broad supply voltage range, this microcontroller can function efficiently in diverse environments and is suitable for low-power applications, enhancing its practicality.

Moreover, Texas Instruments provides software support in the form of Code Composer Studio and various libraries that make it easier for developers to program and utilize the MSP50C614 effectively.

In summary, the Texas Instruments MSP50C614 microcontroller is a powerful, low-power solution equipped with the features and technologies necessary for efficient operation in a wide array of applications. Its blend of performance, flexibility, and energy efficiency makes it a popular choice among engineers and designers looking to create innovative, sustainable designs in the rapidly evolving tech landscape.