Interrupt Logic

Note: Setting a Bit in the IFR Using the OUT Instruction

Setting a bit within the IFR using the OUT instruction is a valid way of obtain- ing a software interrupt. An IFR bit may also be cleared, using OUT, at any time.

Assuming the global interrupt enable is set and the specific bit within the IMR is set, then, at the time of the interrupt-trigger event, an interrupt service branch is initiated. (The trigger event is marked by a 0-to-1 transition in the IFR bit). At that time, the core processor searches all interrupt levels which have both: 1) pending interrupt flag, and 2) interrupt service enabled. The highest priority interrupt among these is selected. The program then branches to the location which is stored in the associated Interrupt Vector (Section 2.6.3, Inter- rupt Vectors). This location constitutes the start of the interrupt service routine. Instructions in the interrupt service routine are executed until the IRET (return) instruction is encountered. Afterwards, any other pending interrupts will be similarly serviced, in the order of their priority. Eventually, the program returns to whatever point it was before the first interrupt service branch.

When an interrupt service branch is taken, the global interrupt enable is automatically cleared by the core processor. This disables all further interrupt service branches while still in the pending service routine. As a result, the programmer must re-enable the interrupts globally using the INTE instruction. If performed as the second-to-last instruction in the service routine, then no nesting of multiple interrupts will occur. If, on the other hand, a nesting of certain interrupts is desired, then the INTE instruction may be included as the first instruction (or anywhere else) within the service routine.

When an interrupt service branch is taken, the processor core also clears another status, namely, the respective bit in the IFR. This action automatically communicates to the IFR that the current pending interrupt is now being serviced. Once cleared, the IFR bit is ready to receive another SET whenever the next trigger event occurs for that interrupt.

Note: Interrupt Service Branch

If the interrupt service branch is not enabled by the respective bit in the mask register, then neither the global interrupt enable nor the respective flag bit is cleared. No program vectoring occurs.

2-24

Page 54
Image 54
Texas Instruments MSP50C614 manual Interrupt Logic

MSP50C614 specifications

The Texas Instruments MSP50C614 is a microcontroller that belongs to the MSP430 family, renowned for its low power consumption and versatile functionality. Primarily designed for embedded applications, this microcontroller is favored in various industries, including consumer electronics, industrial automation, and healthcare devices.

One of the standout features of the MSP50C614 is its ultra-low power technology, which enables it to operate in various power modes. This makes it ideal for battery-powered applications, where energy efficiency is crucial. The MSP430 architecture allows for a flexible power management system, ensuring that energy is conserved while providing robust performance.

The MSP50C614 is equipped with a 16-bit RISC CPU that delivers high performance while maintaining low power usage. With a maximum clock frequency of 16 MHz, it can execute most instructions in a single cycle, resulting in swift operation and responsive performance. This microcontroller also comes with a generous flash memory capacity, allowing developers to store large amounts of code and data conveniently.

In terms of peripherals, the MSP50C614 is highly versatile. It features a range of digital and analog input/output options, including multiple timers, GPIO ports, and various communication interfaces like UART, SPI, and I2C. This extensive set of peripherals allows for seamless integration with other components and simplifies the design of complex systems.

The integrated 12-bit Analog-to-Digital Converter (ADC) stands out as a valuable characteristic of the MSP50C614. This feature enables the microcontroller to convert physical analog signals into digital data, making it particularly useful for sensing applications and real-time monitoring.

Another noteworthy technology employed in the MSP50C614 is its support for low-voltage operations. With a broad supply voltage range, this microcontroller can function efficiently in diverse environments and is suitable for low-power applications, enhancing its practicality.

Moreover, Texas Instruments provides software support in the form of Code Composer Studio and various libraries that make it easier for developers to program and utilize the MSP50C614 effectively.

In summary, the Texas Instruments MSP50C614 microcontroller is a powerful, low-power solution equipped with the features and technologies necessary for efficient operation in a wide array of applications. Its blend of performance, flexibility, and energy efficiency makes it a popular choice among engineers and designers looking to create innovative, sustainable designs in the rapidly evolving tech landscape.