Instruction Set Encoding

4.15 Instruction Set Encoding

Instructions

16

15

14

 

13

12

11

10

9

8

7

6

5

4

 

3

 

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADD An[~], An, {adrs} [, next A]

1

1

1

 

0

~A

next A

An

 

 

 

adrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

dma16 (for direct) or offset16 (long relative) [see section 4.13]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADD An[~], An[~], imm16 [, next A]

1

1

1

 

0

0

next A

An

0

0

0

0

 

0

 

1

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

imm16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADD An[~], An[~], PH [, next A]

1

1

1

 

0

0

next A

An

0

1

1

0

 

1

 

0

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADD An[~], An~, An [, next A]

1

1

1

 

0

0

next A

An

0

0

1

0

 

1

 

0

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADD Rx, imm16

1

1

1

 

1

1

1

1

0

0

0

0

0

 

 

Rx

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

imm16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADD Rx, R5

1

1

1

 

1

1

1

1

0

0

1

0

0

 

 

Rx

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADD APn, imm5

1

1

1

 

1

1

0

1

APn

0

1

0

 

 

 

imm5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDB An, imm5

1

0

1

 

0

0

0

0

An

 

 

 

imm8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDB Rx, imm8

1

0

1

 

1

0

0

k4

k3

k2

k7

k6

k5

 

 

Rx

 

 

k1

k0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDS An[~], An, {adrs}

0

0

0

 

0

~A

1

1

An

 

 

 

adrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

dma16 (for direct) or offset16 (long relative) [see section 4.13]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDS An[~], An[~], pma16

1

1

1

 

0

0

1

1

An

0

0

0

0

 

0

 

1

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

pma16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDS An[~], An~, An

1

1

1

 

0

0

1

1

An

0

0

1

0

 

1

 

0

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDS An[~], An[~], PH

1

1

1

 

0

0

1

1

An

0

1

1

0

 

1

 

0

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AND An, {adrs}

0

1

0

 

0

0

1

0

An

 

 

 

adrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

dma16 (for direct) or offset16 (long relative) [see section 4.13]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AND An[~], An[~], imm16 [, next A]

1

1

1

 

0

0

next A

An

1

0

1

0

 

0

 

1

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

imm16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AND An[~], An~, An [, next A]

1

1

1

 

0

0

next A

An

0

1

0

1

 

0

 

0

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AND TFn, {flagadrs}

1

0

0

 

1

1

flg

Not

1

0

0

 

 

 

flagadrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AND TFn, {cc} [, Rx]

1

0

0

 

1

0

flg

Not

 

 

cc

 

 

 

 

Rx

 

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANDB An, imm8

1

0

1

 

0

1

0

1

An

 

 

 

imm8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANDS An, {adrs}

0

1

0

 

0

0

1

1

An

 

 

 

adrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

dma16 (for direct) or offset16 (long relative) [see section 4.13]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANDS An[~], An[~], pma16

1

1

1

 

0

0

1

1

An

1

0

1

0

 

0

 

1

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANDS An[~], An~, An

1

1

1

 

0

0

1

1

An

0

1

0

1

 

0

 

0

A~

~A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BEGLOOP

1

1

1

 

1

1

1

1

1

0

0

0

0

0

 

0

 

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CALL pma16

1

0

0

 

0

0

1

0

1

0

1

0

1

0

 

0

 

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

pma16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CALL *An

1

0

0

 

0

1

1

0

An

0

0

0

0

 

0

 

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ccc pma16

1

0

0

 

0

0

1

Not

 

 

cc

 

 

0

 

0

 

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

pma16

 

 

 

 

 

 

 

 

 

Assembly Language Instructions

4-187

Page 279
Image 279
Texas Instruments MSP50C614 manual Instruction Set Encoding, Assembly Language Instructions 187

MSP50C614 specifications

The Texas Instruments MSP50C614 is a microcontroller that belongs to the MSP430 family, renowned for its low power consumption and versatile functionality. Primarily designed for embedded applications, this microcontroller is favored in various industries, including consumer electronics, industrial automation, and healthcare devices.

One of the standout features of the MSP50C614 is its ultra-low power technology, which enables it to operate in various power modes. This makes it ideal for battery-powered applications, where energy efficiency is crucial. The MSP430 architecture allows for a flexible power management system, ensuring that energy is conserved while providing robust performance.

The MSP50C614 is equipped with a 16-bit RISC CPU that delivers high performance while maintaining low power usage. With a maximum clock frequency of 16 MHz, it can execute most instructions in a single cycle, resulting in swift operation and responsive performance. This microcontroller also comes with a generous flash memory capacity, allowing developers to store large amounts of code and data conveniently.

In terms of peripherals, the MSP50C614 is highly versatile. It features a range of digital and analog input/output options, including multiple timers, GPIO ports, and various communication interfaces like UART, SPI, and I2C. This extensive set of peripherals allows for seamless integration with other components and simplifies the design of complex systems.

The integrated 12-bit Analog-to-Digital Converter (ADC) stands out as a valuable characteristic of the MSP50C614. This feature enables the microcontroller to convert physical analog signals into digital data, making it particularly useful for sensing applications and real-time monitoring.

Another noteworthy technology employed in the MSP50C614 is its support for low-voltage operations. With a broad supply voltage range, this microcontroller can function efficiently in diverse environments and is suitable for low-power applications, enhancing its practicality.

Moreover, Texas Instruments provides software support in the form of Code Composer Studio and various libraries that make it easier for developers to program and utilize the MSP50C614 effectively.

In summary, the Texas Instruments MSP50C614 microcontroller is a powerful, low-power solution equipped with the features and technologies necessary for efficient operation in a wide array of applications. Its blend of performance, flexibility, and energy efficiency makes it a popular choice among engineers and designers looking to create innovative, sustainable designs in the rapidly evolving tech landscape.