Individual Instruction Descriptions

4.14.36 MOVT

 

 

Move Tag From Source to Destination

 

 

 

 

 

 

 

 

 

 

 

Syntax

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[label]

 

name

 

dest, src

 

 

 

 

 

 

Clock, clk

Word, w

 

 

With RPT, clk

 

 

Class

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOVT

 

{adrs}, TFn

 

 

 

 

 

 

 

Table 4±46

 

 

 

 

Table 4±46

 

 

5

Execution

dest

src

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC PC + w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flags Affected

None

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Opcode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instructions

 

 

16

15

 

14

13

 

12

11

10

9

 

8

 

7

 

6

 

5

 

4

 

3

2

 

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOVT {adrs}, TFn

 

 

1

1

 

0

1

 

0

1

1

1

 

fig

 

 

 

 

 

 

 

 

adrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

dma16 (for direct) or offset16 (long relative) [see section 4.13]

 

 

 

 

Description

Move TFn from STAT register to memory tag. All addressing modes are

 

 

 

available.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See Also

MOVU, MOV, MOVT, MOVB, MOVBS, MOVS

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.14.32.1

MOVT *R3++, TF2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copy the TF2 flag bit to the 17th bit of the word pointed by R3. Increment R3 by 2.

Assembly Language Instructions

4-129

Page 221
Image 221
Texas Instruments MSP50C614 Movt, PC PC + w Flags Affected None Opcode, Available, MOVU, MOV, MOVT, MOVB, MOVBS, Movs

MSP50C614 specifications

The Texas Instruments MSP50C614 is a microcontroller that belongs to the MSP430 family, renowned for its low power consumption and versatile functionality. Primarily designed for embedded applications, this microcontroller is favored in various industries, including consumer electronics, industrial automation, and healthcare devices.

One of the standout features of the MSP50C614 is its ultra-low power technology, which enables it to operate in various power modes. This makes it ideal for battery-powered applications, where energy efficiency is crucial. The MSP430 architecture allows for a flexible power management system, ensuring that energy is conserved while providing robust performance.

The MSP50C614 is equipped with a 16-bit RISC CPU that delivers high performance while maintaining low power usage. With a maximum clock frequency of 16 MHz, it can execute most instructions in a single cycle, resulting in swift operation and responsive performance. This microcontroller also comes with a generous flash memory capacity, allowing developers to store large amounts of code and data conveniently.

In terms of peripherals, the MSP50C614 is highly versatile. It features a range of digital and analog input/output options, including multiple timers, GPIO ports, and various communication interfaces like UART, SPI, and I2C. This extensive set of peripherals allows for seamless integration with other components and simplifies the design of complex systems.

The integrated 12-bit Analog-to-Digital Converter (ADC) stands out as a valuable characteristic of the MSP50C614. This feature enables the microcontroller to convert physical analog signals into digital data, making it particularly useful for sensing applications and real-time monitoring.

Another noteworthy technology employed in the MSP50C614 is its support for low-voltage operations. With a broad supply voltage range, this microcontroller can function efficiently in diverse environments and is suitable for low-power applications, enhancing its practicality.

Moreover, Texas Instruments provides software support in the form of Code Composer Studio and various libraries that make it easier for developers to program and utilize the MSP50C614 effectively.

In summary, the Texas Instruments MSP50C614 microcontroller is a powerful, low-power solution equipped with the features and technologies necessary for efficient operation in a wide array of applications. Its blend of performance, flexibility, and energy efficiency makes it a popular choice among engineers and designers looking to create innovative, sustainable designs in the rapidly evolving tech landscape.