Reference Manual

00809-0100-4663, Rev BA January 2010

Rosemount 8732

High Process Noise Functionality

1.Turn on the Digital Signal Processing (DSP) technology and follow the setup procedure (refer to Appendix D: Digital Signal Processing). This will minimize the level of damping in the flow measurement and control loop while also stabilizing the reading to minimize valve actuation.

2.Increase damping to stabilize the signal (refer to “PV Damping” on page 3-11). This will add dead-time to the control loop.

3.Move to a Rosemount High-Signal flowmeter system. This flowmeter will deliver a stable signal by increasing the amplitude of the flow signal by ten times to increase the signal to noise ratio. For example if the signal to noise ratio (SNR) of a standard magmeter is 5, the High-Signal would have a SNR of 50 in the same application. The Rosemount High-Signal system is comprised of the 8707 sensor which has modified coils and magnetics and the 8712H High-Signal transmitter.

NOTE

In applications where very high levels of noise are a concern, it is recommended that a dual-calibrated Rosemount High-Signal 8707 sensor be used. These sensors can be calibrated to run at lower coil drive current supplied by the standard Rosemount transmitters, but can also be upgraded by changing to the 8712H High-Signal transmitter.

The High Process Noise diagnostic is useful for detecting situations where the process fluid may be causing electrical noise resulting in a poor measurement from the magnetic flowmeter. There are three basic types of process noise that can affect the performance of the magnetic flowmeter system.

1/f Noise

This type of noise has higher amplitudes at lower frequencies, but generally degrades over increasing frequencies. Potential sources of 1/f noise include chemical mixing and the general background noise of the plant.

Spike Noise

This type of noise generally results in a high amplitude signal at specific frequencies which can vary depending on the source of the noise. Common sources of spike noise include chemical injections directly upstream of the flowmeter, hydraulic pumps, and slurry flows with low concentrations of particles in the stream. The particles bounce off of the electrode generating a “spike” in the electrode signal. An example of this type of flow stream would be a recycle flow in a paper mill.

White Noise

This type of noise results in a high amplitude signal that is relatively constant over the frequency range. Common sources of white noise include chemical reactions or mixing that occurs as the fluid passes through the flowmeter and high concentration slurry flows where the particulates are constantly passing over the electrode head. An example of this type of flow stream would be a high consistency pulp stock stream (>10%) in a paper mill.

C-7

Page 127
Image 127
Emerson Process Management 8732 manual High Process Noise Functionality, Spike Noise, White Noise