SM320F2812-HT

www.ti.com

SGUS062A –JUNE 2009 –REVISED APRIL 2010

Figure 4-12shows how the various register bits select the various modes of operation for GPIO function.

GPxDAT/SET/CLEAR/TOGGLE

 

Digital I/O

Peripheral I/O

Register Bit(s)

 

 

 

 

 

 

GPxQUAL

 

GPxMUX

GPxDIR

High-

 

Impedance

Register

 

Register Bit

Register Bit

 

Control

 

 

 

 

0

1

 

0

1

MUX

 

 

MUX

 

Input Qualification

 

 

 

SYSCLKOUT

 

 

High-Impedance

 

 

 

Enable (1)

 

 

 

 

 

 

XRS

Internal (Pullup or Pulldown)

PIN

A.In the GPIO mode, when the GPIO pin is configured for output operation, reading the GPxDAT data register only gives the value written, not the value at the pin. In the peripheral mode, the state of the pin can be read through the GPxDAT register, provided the corresponding direction bit is zero (input mode).

B.Some selected input signals are qualified by the SYSCLKOUT. The GPxQUAL register specifies the qualification sampling period. The sampling window is 6 samples wide and the output is only changed when all samples are the same (all 0's or all 1's). This feature removes unwanted spikes from the input signal.

Figure 4-12. GPIO/Peripheral Pin Multiplexing

NOTE

The input function of the GPIO pin and the input path to the peripheral are always enabled. It is the output function of the GPIO pin that is multiplexed with the output path of the primary (peripheral) function. Since the output buffer of a pin connects back to the input buffer, any GPIO signal present at the pin is propagated to the peripheral module as well. Therefore, when a pin is configured for GPIO operation, the corresponding peripheral functionality (and interrupt-generating capability) must be disabled. Otherwise, interrupts may be inadvertently triggered. This is especially critical when the PDPINTA and PDPINTB pins are used as GPIO pins, since a value of zero for GPDDAT.0 or GPDDAT.5 (PDPINTx) puts PWM pins in a high-impedance state. The CxTRIP and TxCTRIP pins also put the corresponding PWM pins in high impedance, if they are driven low (as GPIO pins) and bit EXTCONx.0 = 1.

Copyright © 2009–2010, Texas Instruments Incorporated

Peripherals

81

Submit Documentation Feedback

Product Folder Link(s): SM320F2812-HT

Page 81
Image 81
Texas Instruments SM320F2812-HT specifications Pin

SM320F2812-HT specifications

The Texas Instruments SM320F2812-HT is a highly capable digital signal processor (DSP) specifically designed for high-performance and real-time applications in harsh environments. This part of the C2000 family of microcontrollers caters to applications in areas such as industrial automation, motor control, and power conversion, where reliability and durability under extreme temperature conditions are paramount.

One of the standout features of the SM320F2812-HT is its robust architecture based on a 32-bit fixed-point core. This allows for efficient execution of complex algorithms while maintaining a high processing speed. The processor operates at clock speeds of up to 150 MHz, enabling it to handle multiple tasks simultaneously with minimal latency.

The SM320F2812-HT boasts an impressive memory configuration that includes up to 128 KB of flash memory and 4 KB of RAM. The integrated memory supports efficient data handling and storage, making it ideal for demanding applications that require quick access to critical information. The device also features various peripherals, including analog-to-digital converters (ADCs), pulse width modulation (PWM) modules, and serial communication interfaces, which enhance its functionality in real-time processing and control tasks.

Furthermore, this DSP employs advanced control algorithms and supports various communication protocols, allowing it to interoperate seamlessly with other devices within a system. Its capabilities are further enhanced by Texas Instruments’ extensive development tools and software libraries, which enable developers to accelerate design cycles and improve overall efficiency.

With its high temperature rating, the SM320F2812-HT is designed to operate within a temperature range from -40°C to 125°C, making it particularly well-suited for use in automotive, aerospace, and other rugged environments where traditional components might fail. The high reliability and endurance of this microcontroller make it a preferred choice among engineers looking for durable solutions without compromising performance.

In summary, the Texas Instruments SM320F2812-HT represents a powerful blend of processing capabilities, memory architecture, and environmental resilience. Its features make it a go-to option for developers in search of a robust DSP for real-time applications, ensuring that it meets the rigorous demands of various industrial sectors while delivering consistent performance.