Bosch Appliances TTCAN user manual Oscillator Tolerance Range

Page 50

TTCAN

User’s Manual

Revision 1.6

4.2.1.4 Oscillator Tolerance Range

The oscillator tolerance range was increased when the CAN protocol was developed from version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to synchronise on edges from dominant to recessive became obsolete, only edges from recessive to dominant are considered for synchronisation. The only CAN controllers to implement protocol version 1.1 have been Intel 82526 and Philips 82C200, both are superseded by successor products. The protocol update to version 2.0 (A and B) had no influence on the oscillator tolerance.

The tolerance range df for an oscillator’s frequency fosc around the nominal frequency fnom

with (1 df)fnom fosc ≤ (1 + df) • fnom depends on the proportions of Phase_Seg1, Phase_Seg2, SJW, and the bit time. The maximum tolerance df is the defined by two conditions (both shall

be met):

I:

df -min----------(--Phase-----------------_----Seg1--------------,----Phase-----------------_---Seg2--------------)-

 

 

2 • (13 bit_time Phase_Seg2)

II:

df

SJW

20-------------bit------_----time---------

It has to be considered that SJW may not be larger than the smaller of the Phase Buffer Segments and that the Propagation Time Segment limits that part of the bit time that may be used for the Phase Buffer Segments.

The combination Prop_Seg = 1 and Phase_Seg1 = Phase_Seg2 = SJW = 4 allows the largest possible oscillator tolerance of 1.58%. This combination with a Propagation Time Segment of only 10% of the bit time is not suitable for short bit times; it can be used for bit rates of up to 125 kBit/s (bit time = 8 s) with a bus length of 40 m.

4.2.1.5 Configuration of the CAN Protocol Controller

In most CAN implementations and also in the TTCAN, the bit timing configuration is programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSEG1) is combined with Phase_Seg2 (as TSEG2) in one byte, SJW and BRP are combined in the other byte (see figure 13).

manual_about.fm

 

 

Configuration (BRP)

 

 

 

System Clock

Baudrate_

Scaled_Clock (tq)

 

Processor

Control

 

Prescaler

 

 

 

 

 

 

Sample_Point

 

Status

Receive_Data

Bit

Sampled_Bit

 

 

Sync_Mode

 

Stream

 

 

 

Timing

 

 

 

 

Bit_to_send

IPT

 

 

 

Logic

Received_Data_Bit

Transmit_Data

 

 

Bus_Off

 

 

 

Bit

 

 

 

 

 

 

Send_Message

 

 

 

 

 

 

 

 

 

Control

 

 

 

 

Next_Data_Bit

Shift-Register

 

 

 

 

 

 

Received_Message

 

 

Configuration (TSEG1, TSEG2, SJW)

 

Figure 13: Structure of the CAN Core’s CAN Protocol Controller

BOSCH

- 50/77 -

11.11.02

Image 50
Contents User’s Manual Robert Bosch GmbHCopyright Notice and Proprietary Information Conventions Scope References Terms and Abbreviations Functional Overview 2.2. Block Diagram Operating ModesChange Control Can Application Ttcan Message Handling Ttcan ConfigurationTtcan Schedule Initialisation List of FiguresConventions Change Control Current StatusChange History Helvetica boldTerm Meaning Functional Overview Cpuifc TtcanOperating Modes Software Initialisation Can Message TransferTest Register addresses 0x0B & 0x0A Disabled Automatic RetransmissionTest Mode Ttcan =1 Loop Back Mode Loop Back combined with Silent ModeNo Message RAM Mode Software control of Pin CantxAddress Name Reset Value Hardware Reset Description Ttcan Register SummaryEIE CCEDAR SIENo Error Status Register addresses 0x03Bit Timing Register addresses 0x07 Error Counter addresses 0x05Status Interrupts BRP Extension Register addresses 0x0D & 0x0C Arb IFx Command Mask RegistersDirection = Write Control IFx Command Request RegistersDirection = Read ClrIntPndIFx Message Buffer Registers BusyMessage Number IFx Mask RegistersMessage Object in the Message Memory IFx Message Control RegistersIFx Data a and Data B Registers Xtd ID28-0Msk28-0 Dir26/77 11.11.02 Message Handler Registers Interrupt Register addresses 0x09Interrupt Pending Registers Transmission Request RegistersNew Data Registers Trigger Number 2 IF1 Data B1 and B2 Registers for Trigger Memory AccessMessage Valid 1 Register TimeMark At CycleCount mod TT Operation Mode Register addresses 0x29Type MPr2-0TEW EecsRdlc Bark TT Interrupt Enable Register addresses 0x31CCM AppWdLGTW CELGTE SWERTO TUR Numerator Configuration Low Register addresses 0x57 TT Error Level Register addresses 0x3F & 0x3ETT Cycle Count Register addresses 0x3D & 0x3C TT StopWatch Register addresses 0x61 TUR Denominator Configuration Register addresses 0x59TUR Numerator Actual Registers addresses 0x5B & 0x5A Ecal QCSQgtp EgtfECS TMCDET SWSEPE TMG40/77 11.11.02 Internal can Message Handling Data Transfer Between IFx Registers and Message RAMTransmission of Messages in Event Driven can Communication StartReception of Remote Frame Acceptance Filtering of Received MessagesReception of Data Frame Storing Received Messages in Fifo BuffersReceive / Transmit Priority Configuration of the ModuleBit Time and Bit Rate Sync PropSeg PhaseSeg1 PhaseSeg21 Configuration of the Bit Timing Canclk input Nominal can Bit TimePropagation Time Segment BRPPhase Buffer Segments and Synchronisation Synchronisation on late and early Edges Filtering of Short Dominant Spikes Oscillator Tolerance Range 1.5 Configuration of the can Protocol ControllerCalculation of the Bit Timing Parameters Example for Bit Timing at high Baudrate Example for Bit Timing at low Baudrate 2 Configuration of the Message Memory2.1 Configuration of a Transmit Object for Data Frames 2.2 Configuration of a Single Receive Object for Data Frames2.3 Configuration of a Fifo Buffer Can Communication Handling of InterruptsUpdating a Transmit Object Requesting New Data for a Receive Object Changing a Transmit ObjectReading Received Messages Reading from a Fifo BufferCPU Handling of a Fifo Buffer Interrupt Driven Ttcan Configuration Ttcan TimingMessage Scheduling TUR510 125000 32.5 100/12 529/17 Trigger Memory 63/77 11.11.02 Periodic Transmit Message Message ObjectsReference Message Potential Time Masters Event Driven Transmit MessageTime Slaves Periodic Messages Ttcan Message Handling Message ReceptionMessage Transmission Event Driven MessagesTtcan Gap Control StopwatchCycle Time and Global Time Synchronisation Ttcan Interrupt and Error Handling Previous RefMarkConfiguration Example Register Remark Rdlc & TEW & CCMType & Msg & CycleCode RTO , TM , L2 , TTMode3 74/77 11.11.02 Customer Interface GenericInterface Busy = ‘1’ Busy = ‘0’ Timing of the Wait output signalCanclk Canwaitb Interrupt TimingEOF