INSTRUCTION SET REFERENCE

Operation: CPL

(CY) Ø(CY)

CPL bit

Binary Mode Source Mode

Bytes:

4

3

 

 

States:

4†

 

3†

 

 

 

 

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

 

 

 

 

 

 

 

 

 

 

 

 

1 0 1 0

1 0 0 1

 

1 0 1 1

0

y y y

 

 

 

 

 

 

 

dir addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: CPL

(bit) Ø(bit)

DA A

Function: Decimal-adjust accumulator for addition

Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010–XXXX1111), or if the AC flag is set, six is added to the accumulator, producing the proper BCD digit in the low nibble. This internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX–1111XXXX), these four bits are incremented by six, producing the proper BCD digit in the high nibble. Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD notation, nor does DA A apply to decimal subtraction.

Flags:

CY

AC

OV

N

Z

 

 

 

 

 

 

 

 

 

 

A-51

Page 303
Image 303
Intel 8XC251SB, 8XC251SA, 8XC251SP, 8XC251SQ manual Operation CPL, CPL bit Binary Mode Source Mode Bytes States

Embedded Microcontroller, 8XC251SP, 8XC251SA, 8XC251SQ, 8XC251SB specifications

The Intel 8XC251 series of embedded microcontrollers is a family of versatile and powerful devices, designed to meet the demands of a wide range of applications. With models such as the 8XC251SB, 8XC251SQ, 8XC251SA, and 8XC251SP, this series offers unique features while maintaining a high level of performance and reliability.

At the heart of the 8XC251 microcontrollers is the 8051 architecture, which provides a 16-bit processor capable of executing complex instructions efficiently. This architecture not only allows for a rich instruction set but also facilitates programming in assembly language and higher-level languages like C, which are essential for developing sophisticated embedded systems.

One of the significant features of the 8XC251 family is its integrated peripherals, including timer/counters, serial communication interfaces, and interrupt systems. These peripherals enable developers to implement timing functions, data communication, and real-time processing, all of which are crucial in modern embedded applications. The 8XC251SB and 8XC251SQ models, for instance, come equipped with multiple I/O ports that allow for interfacing with other devices and systems, enhancing their functionality in various environments.

The memory architecture of the 8XC251 devices is noteworthy, featuring on-chip ROM, RAM, and EEPROM. The on-chip memory allows for fast access times, which is essential for executing programs efficiently. Moreover, the EEPROM serves as non-volatile memory, enabling the storage of configuration settings and important data that must be retained even when power is lost.

In terms of operating voltage, the 8XC251 devices are designed to operate in a wide range, typically between 4.0V and 6.0V. This flexibility makes them suitable for battery-powered applications, where energy efficiency is critical. The power management features, including reduced power modes, further enhance their suitability for portable devices.

Lastly, the 8XC251 series is supported by a wide range of development tools and resources, allowing engineers and developers to streamline the development process. This support, combined with the microcontrollers' robust features, makes the Intel 8XC251 family a reliable choice for various embedded applications, such as industrial automation, automotive systems, and consumer electronics.

Overall, the Intel 8XC251SB, 8XC251SQ, 8XC251SA, and 8XC251SP deliver high performance, versatility, and ease of use, making them a preferred choice for embedded system designers looking to develop efficient and effective solutions.