ARCHITECTURAL OVERVIEW

2.2.1CPU

Figure 2-2 is a functional block diagram of the CPU (central processor unit). The 8XC251Sx fetches instructions from on-chip code memory two bytes at a time, or from external memory in single bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can con- figure the 8XC251Sx to operate in page mode for accelerated instruction fetches from external memory. In page mode, if an instruction fetch is to the same 256-byte “page” as the previous fetch, the fetch requires one state (two clocks) rather than two states (four clocks).

The 8XC251Sx register file has forty registers, which can be accessed as bytes, words, and double words. As in the MCS 51 architecture, registers 0–7 consist of four banks of eight registers each, where the active bank is selected by the program status word (PSW) for fast context switches.

The 8XC251Sx is a single-pipeline machine. When the pipeline is full and code is executing from on-chip code memory, an instruction is completed every state time. When the pipeline is full and code is executing from external memory (with no wait states and no extension of the ALE signal), an instruction is completed every two state times.

Code Bus

16

24

Code Address

 

 

 

 

 

 

 

 

Instruction Sequencer

SRC1

8

SRC2

8

8

Interrupt Handler

Data Bus

ALU

Register

Data

Memory

File

 

Interface

 

 

24

Data Address

DST

16

Figure 2-2. The CPU

2-5

Page 37
Image 37
Intel 8XC251SQ, 8XC251SA, 8XC251SP, 8XC251SB, Embedded Microcontroller manual 1 CPU, SRC1 SRC2, Alu, Dst

Embedded Microcontroller, 8XC251SP, 8XC251SA, 8XC251SQ, 8XC251SB specifications

The Intel 8XC251 series of embedded microcontrollers is a family of versatile and powerful devices, designed to meet the demands of a wide range of applications. With models such as the 8XC251SB, 8XC251SQ, 8XC251SA, and 8XC251SP, this series offers unique features while maintaining a high level of performance and reliability.

At the heart of the 8XC251 microcontrollers is the 8051 architecture, which provides a 16-bit processor capable of executing complex instructions efficiently. This architecture not only allows for a rich instruction set but also facilitates programming in assembly language and higher-level languages like C, which are essential for developing sophisticated embedded systems.

One of the significant features of the 8XC251 family is its integrated peripherals, including timer/counters, serial communication interfaces, and interrupt systems. These peripherals enable developers to implement timing functions, data communication, and real-time processing, all of which are crucial in modern embedded applications. The 8XC251SB and 8XC251SQ models, for instance, come equipped with multiple I/O ports that allow for interfacing with other devices and systems, enhancing their functionality in various environments.

The memory architecture of the 8XC251 devices is noteworthy, featuring on-chip ROM, RAM, and EEPROM. The on-chip memory allows for fast access times, which is essential for executing programs efficiently. Moreover, the EEPROM serves as non-volatile memory, enabling the storage of configuration settings and important data that must be retained even when power is lost.

In terms of operating voltage, the 8XC251 devices are designed to operate in a wide range, typically between 4.0V and 6.0V. This flexibility makes them suitable for battery-powered applications, where energy efficiency is critical. The power management features, including reduced power modes, further enhance their suitability for portable devices.

Lastly, the 8XC251 series is supported by a wide range of development tools and resources, allowing engineers and developers to streamline the development process. This support, combined with the microcontrollers' robust features, makes the Intel 8XC251 family a reliable choice for various embedded applications, such as industrial automation, automotive systems, and consumer electronics.

Overall, the Intel 8XC251SB, 8XC251SQ, 8XC251SA, and 8XC251SP deliver high performance, versatility, and ease of use, making them a preferred choice for embedded system designers looking to develop efficient and effective solutions.