Intel 8XC251SA, 8XC251SP, 8XC251SQ, 8XC251SB manual Programmable Counter Array PCA, Serial I/O Port

Models: Embedded Microcontroller 8XC251SP 8XC251SA 8XC251SQ 8XC251SB

1 458
Download 458 pages 25.38 Kb
Page 40
Image 40

8XC251SA, SB, SP, SQ USER’S MANUAL

The watchdog timer is a circuit that automatically resets the 8XC251Sx in the event of a hardware or software upset. When enabled by software, the watchdog timer begins running, and unless software intervenes, the timer reaches a maximum count and initiates a chip reset. In normal op- eration, software periodically clears the timer register to prevent the reset. If an upset occurs and software fails to clear the timer, the resulting chip reset disables the timer and returns the system to a known state. The watchdog and the timer/counters are described in Chapter 8, “Tim- er/Counters and WatchDog Timer.”

2.3.2Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modules that perform several functions: capturing (storing) the timer value in response to a transition on an in- put pin; generating an interrupt request when the timer matches a stored value; toggling an output pin when the timer matches a stored value; generating a programmable PWM (pulse width mod- ulator) signal on an output pin; and serving as a software watchdog timer. Chapter 9, “Program- mable Counter Array,” describes this peripheral in detail.

2.3.3Serial I/O Port

The serial I/O port provides one synchronous and three asynchronous communication modes. The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin and transmits or receives data on another pin.

The asynchronous modes (modes 1–3) are full-duplex (i.e., the port can send and receive simul- taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. The baud rate is generated by overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11 bits: a start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be used for parity checking or to specify that the frame contains an address and data. In mode 2, you can use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the overflow from timer 1 or timer 2 to determine the baud rate.

In its synchronous modes (modes 1–3) the serial port can operate as a slave in an environment where multiple slaves share a single serial line. It can accept a message intended for itself or a message that is being broadcast to all of the slaves, and it can ignore a message sent to another slave.

2-8

Page 40
Image 40
Intel 8XC251SA, 8XC251SP, 8XC251SQ, 8XC251SB, Embedded Microcontroller manual Programmable Counter Array PCA, Serial I/O Port

Embedded Microcontroller, 8XC251SP, 8XC251SA, 8XC251SQ, 8XC251SB specifications

The Intel 8XC251 series of embedded microcontrollers is a family of versatile and powerful devices, designed to meet the demands of a wide range of applications. With models such as the 8XC251SB, 8XC251SQ, 8XC251SA, and 8XC251SP, this series offers unique features while maintaining a high level of performance and reliability.

At the heart of the 8XC251 microcontrollers is the 8051 architecture, which provides a 16-bit processor capable of executing complex instructions efficiently. This architecture not only allows for a rich instruction set but also facilitates programming in assembly language and higher-level languages like C, which are essential for developing sophisticated embedded systems.

One of the significant features of the 8XC251 family is its integrated peripherals, including timer/counters, serial communication interfaces, and interrupt systems. These peripherals enable developers to implement timing functions, data communication, and real-time processing, all of which are crucial in modern embedded applications. The 8XC251SB and 8XC251SQ models, for instance, come equipped with multiple I/O ports that allow for interfacing with other devices and systems, enhancing their functionality in various environments.

The memory architecture of the 8XC251 devices is noteworthy, featuring on-chip ROM, RAM, and EEPROM. The on-chip memory allows for fast access times, which is essential for executing programs efficiently. Moreover, the EEPROM serves as non-volatile memory, enabling the storage of configuration settings and important data that must be retained even when power is lost.

In terms of operating voltage, the 8XC251 devices are designed to operate in a wide range, typically between 4.0V and 6.0V. This flexibility makes them suitable for battery-powered applications, where energy efficiency is critical. The power management features, including reduced power modes, further enhance their suitability for portable devices.

Lastly, the 8XC251 series is supported by a wide range of development tools and resources, allowing engineers and developers to streamline the development process. This support, combined with the microcontrollers' robust features, makes the Intel 8XC251 family a reliable choice for various embedded applications, such as industrial automation, automotive systems, and consumer electronics.

Overall, the Intel 8XC251SB, 8XC251SQ, 8XC251SA, and 8XC251SP deliver high performance, versatility, and ease of use, making them a preferred choice for embedded system designers looking to develop efficient and effective solutions.