17-14 Applications
8317APPS.DOC TI-83 international English Bob Fedorisko Revised: 02/19/01 1:00 PM Printed: 02/19/01 1:39 PM
Page 14 of 20
Using the functions fnInt( and nDeriv( from the MATH menu
to graph functions defined by integrals and derivatives
demonstrates graphically that:
F(x) = ‰1
x
1àt dt = ln(x), x > 0 and that
Dx[‰1
x
1àt dt] = 1àx
1. Press z. Select the default settings.
2. Press p. Set the viewing window.
Xmin=.01 Ymin=M1.5 Xres=3
Xmax=10 Ymax=2.5
Xscl=1 Yscl=1
3. Press o. Turn off all functions and stat plots. Enter the
numerical integral of 1àT from 1 to X and the function
ln(X). Set the graph style for Y1 to ç (line) and Y2 to
ë (path).
4. Press r. Press |, }, ~, and † to compare the
values of Y1 and Y2.
5. Press o. Turn off Y1 and Y2, and then enter the
numerical derivative of the integral of 1àX and the
function 1àX. Set the graph style for Y3 to ç (line) and Y4
to è (thick).
6. Press r. Again, use the cursor keys to compare the
values of the two graphed functions, Y3 and Y4.
Demonstrating the Fundamental Theorem of CalculusProblem 1
Procedure 1