Shortest Path Tree

To build Router A’s shortest path tree for the network diagrammed below, Router A is put at the root of the tree and the smallest cost link to each destination network is calculated.

Router A

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

128.213.0.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Router B

8

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

5

192.128.11.0

Router C

10

5

1

 

3

 

5

 

7

 

9

 

11

 

13

 

15

 

17

 

19

 

21

 

23

 

25

 

27

 

29

 

31

 

33

 

35

 

2

 

4

 

6

 

8

 

10

12

 

14

16

 

18

 

20

 

22

 

24

 

26

28

 

30

 

32

 

34

 

36

 

10

Router D

1

 

3

 

5

 

7

 

9

 

11

 

13

 

15

 

17

 

19

 

21

 

23

 

25

 

27

 

29

 

31

 

33

 

35

 

2

 

4

 

6

 

8

 

10

12

 

14

16

 

18

 

20

 

22

 

24

 

26

28

 

30

 

32

 

34

 

36

 

10

222.211.10.0

 

 

 

Router A

 

 

0

 

128.213.0.0

 

10

 

 

 

10

 

 

Router B

 

 

5

 

Router C

 

 

 

192.213.11.0

 

5

 

 

 

 

 

 

Router D

10

 

 

 

10

222.211.10.0

Figure 6- 98. Constructing a Shortest Path Tree

The diagram above shows the network from the viewpoint of Router A. Router A can reach 192.213.11.0 through Router B with a cost of 10+5=15. Router A can reach 222.211.10.0 through Router C with a cost of 10+10=20. Router A can also reach 222.211.10.0 through Router B and Router D with a cost of 10+5+10=25, but the cost is higher than the route through Router C.This higher-cost route will not be included in the Router A’s shortest path tree.The resulting tree will look like this:

Allied Telesyn AT-9724TS High-Density Layer 3 Stackable Gigabit Ethernet Switch

104

Page 105
Image 105
Allied Telesis AT-9724TS specifications Shortest Path Tree, 104