www.ti.com

Architecture

2.16.2MDIO Module Interrupt Events and Requests

The MDIO module generates two interrupt events:

LINKINT: Serial interface link change interrupt. Indicates a change in the state of the PHY link

USERINT: Serial interface user command event complete interrupt

2.16.2.1Link Change Interrupt

The MDIO module asserts a link change interrupt (LINKINT) if there is a change in the link state of the PHY corresponding to the address in the PHYADRMON bit in the MDIO user PHY select register n (USERPHYSELn), and if the LINKINTENB bit is also set in USERPHYSELn. This interrupt event is also captured in the LINKINTRAW bit in the MDIO link status change interrupt register (LINKINTRAW). LINKINTRAW bits 0 and 1 correspond to USERPHYSEL0 and USERPHYSEL1, respectively.

When the interrupt is enabled and generated, the corresponding LINKINTMASKED bit is also set in the MDIO link status change interrupt register (LINKINTMASKED). The interrupt is cleared by writing back the same bit to LINKINTMASKED (write to clear).

2.16.2.2User Access Completion Interrupt

When the GO bit in one of the MDIO user access registers (USERACCESSn) transitions from 1 to 0 (indicating completion of a user access) and the corresponding USERINTMASKSET bit in the MDIO user command complete interrupt mask set register (USERINTMASKSET) corresponding to USERACCESS0 or USERACCESS1 is set, a user access completion interrupt (USERINT) is asserted. This interrupt event is also captured in the USERINTRAW bit in the MDIO user command complete interrupt register (USERINTRAW). USERINTRAW bits 0 and bit 1 correspond to USERACCESS0 and USERACCESS1, respectively.

When the interrupt is enabled and generated, the corresponding USERINTMASKED bit is also set in the MDIO user command complete interrupt register (USERINTMASKED). The interrupt is cleared by writing back the same bit to USERINTMASKED (write to clear).

2.16.3Proper Interrupt Processing

All the interrupts signaled from the EMAC and MDIO modules are level driven, so if they remain active, their level remains constant; the CPU core requires edge-triggered interrupts. In order to properly convert the level-driven interrupt signal to an edge-triggered signal, the application software must make use of the interrupt control logic contained in the EMAC control module.

Section 2.6.3 discusses the interrupt control contained in the EMAC control module. For safe interrupt processing, upon entry to the ISR, the software application should disable interrupts using the EMAC control module interrupt control registers (CMRXTHRESHINTEN, CMRXINTEN, CMTXINTEN, and CMMISCINTEN), and then reenable them upon leaving the ISR. If any interrupt signals are active at that time, this creates another rising edge on the interrupt signal going to the CPU interrupt controller, thus triggering another interrupt. The EMAC control module also implements the optional interrupt pacing.

2.16.4Interrupt Multiplexing

The EMAC control module combines all the different interrupt signals from both the EMAC and MDIO modules and generates four separate interrupt signals (Table 5) that are wired to the ARM interrupt controller (AINTC), as seen in Figure 12. Once this interrupt is generated, the reason for the interrupt can be read from the MAC input vector register (MACINVECTOR) located in the EMAC memory map. MACINVECTOR combines the status of the following 28 interrupt signals: TXPENDn, RXPENDn, RXTHRESHPENDn, STATPEND, HOSTPEND, LINKINT, and USERINT.

For more details on the ARM interrupt controller (AINTC), see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (SPRUEP9).

SPRUEQ6–December 2007

Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO)

59

Submit Documentation Feedback

Page 59
Image 59
Texas Instruments TMS320DM646x Mdio Module Interrupt Events and Requests, Link Change Interrupt, Interrupt Multiplexing

TMS320DM646x specifications

The Texas Instruments TMS320DM646x series is a powerful family of digital media processors designed to handle high-performance applications in video, imaging, and audio processing. These devices leverage advanced technologies to deliver efficient processing capabilities for a variety of embedded systems, making them ideal for multimedia solutions.

At the core of the TMS320DM646x is the versatile DSP architecture, which optimizes performance for digital signal processing tasks. This architecture allows for real-time processing, enabling the devices to handle complex algorithms necessary for image and video compression, thereby meeting the rigorous demands of modern multimedia applications.

One of the standout features of the TMS320DM646x series is its dual-core architecture. This consists of a Digital Signal Processor (DSP) alongside an ARM-based application processor. The DSP is predominantly employed for critical processing tasks, allowing it to execute high-throughput data streams efficiently, while the ARM processor manages control tasks and user interfaces. This division of labor enhances overall system performance and responsiveness.

The series supports a wide range of video formats and technologies, including HD video encoding and decoding, which accommodates HD resolution content essential for today’s multimedia applications. Furthermore, the TMS320DM646x integrates hardware accelerators for video compression standards such as H.264 and MPEG-4, which significantly reduce the processing burden on the CPU, resulting in lower power consumption and higher efficiency.

Networking capabilities are another significant feature of the TMS320DM646x. With support for Ethernet, the device can handle streaming media applications and connectivity, facilitating the transmission of high-quality audio and video over the internet. This connectivity is crucial for developing robust IPTV and streaming solutions.

Power management is a primary focus in the design of the TMS320DM646x series. The processors are built to operate efficiently with minimal power consumption, making them suitable for portable and battery-operated devices. The low power characteristics do not compromise performance, enabling high computational capabilities while maintaining energy efficiency.

Overall, the Texas Instruments TMS320DM646x series offers an exceptional combination of processing power, advanced multimedia capabilities, and energy efficiency. It optimally supports a wide array of applications, from video processing and image analysis to audio encoding. This comprehensive feature set, along with its robust architecture, positions the TMS320DM646x as a leading choice for developers in the digital media space.