www.ti.com

Architecture

2.5.4.1Next Descriptor Pointer

The next descriptor pointer points to the 32-bit word aligned memory address of the next buffer descriptor in the transmit queue. This pointer is used to create a linked list of buffer descriptors. If the value of this pointer is zero, then the current buffer is the last buffer in the queue. The software application must set this value prior to adding the descriptor to the active transmit list. This pointer is not altered by the EMAC.

The value of pNext should never be altered once the descriptor is in an active transmit queue, unless its current value is NULL. If the pNext pointer is initially NULL, and more packets need to be queued for transmit, the software application may alter this pointer to point to a newly appended descriptor. The EMAC will use the new pointer value and proceed to the next descriptor unless the pNext value has already been read. In this latter case, the transmitter will halt on the transmit channel in question, and the software application may restart it at that time. The software can detect this case by checking for an end of queue (EOQ) condition flag on the updated packet descriptor when it is returned by the EMAC.

2.5.4.2Buffer Pointer

The buffer pointer is the byte-aligned memory address of the memory buffer associated with the buffer descriptor. The software application must set this value prior to adding the descriptor to the active transmit list. This pointer is not altered by the EMAC.

2.5.4.3Buffer Offset

This 16-bit field indicates how many unused bytes are at the start of the buffer. For example, a value of 0000h indicates that no unused bytes are at the start of the buffer and that valid data begins on the first byte of the buffer, while a value of 000Fh indicates that the first 15 bytes of the buffer are to be ignored by the EMAC and that valid buffer data starts on byte 16 of the buffer. The software application must set this value prior to adding the descriptor to the active transmit list. This field is not altered by the EMAC.

Note that this value is only checked on the first descriptor of a given packet (where the start of packet (SOP) flag is set). It can not be used to specify the offset of subsequent packet fragments. Also, since the buffer pointer may point to any byte–aligned address, this field may be entirely superfluous, depending on the device driver architecture.

The range of legal values for this field is 0 to (Buffer Length – 1).

2.5.4.4Buffer Length

This 16-bit field indicates how many valid data bytes are in the buffer. On single fragment packets, this value is also the total length of the packet data to be transmitted. If the buffer offset field is used, the offset bytes are not counted as part of this length. This length counts only valid data bytes. The software application must set this value prior to adding the descriptor to the active transmit list. This field is not altered by the EMAC.

2.5.4.5Packet Length

This 16-bit field specifies the number of data bytes in the entire packet. Any leading buffer offset bytes are not included. The sum of the buffer length fields of each of the packet’s fragments (if more than one) must be equal to the packet length. The software application must set this value prior to adding the descriptor to the active transmit list. This field is not altered by the EMAC. This value is only checked on the first descriptor of a given packet (where the start of packet (SOP) flag is set).

2.5.4.6Start of Packet (SOP) Flag

When set, this flag indicates that the descriptor points to a packet buffer that is the start of a new packet. In the case of a single fragment packet, both the SOP and end of packet (EOP) flags are set. Otherwise, the descriptor pointing to the last packet buffer for the packet sets the EOP flag. This bit is set by the software application and is not altered by the EMAC.

SPRUEQ6–December 2007

Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO)

25

Submit Documentation Feedback

Page 25
Image 25
Texas Instruments TMS320DM646x manual Next Descriptor Pointer, Buffer Pointer, Buffer Offset, Buffer Length, Packet Length

TMS320DM646x specifications

The Texas Instruments TMS320DM646x series is a powerful family of digital media processors designed to handle high-performance applications in video, imaging, and audio processing. These devices leverage advanced technologies to deliver efficient processing capabilities for a variety of embedded systems, making them ideal for multimedia solutions.

At the core of the TMS320DM646x is the versatile DSP architecture, which optimizes performance for digital signal processing tasks. This architecture allows for real-time processing, enabling the devices to handle complex algorithms necessary for image and video compression, thereby meeting the rigorous demands of modern multimedia applications.

One of the standout features of the TMS320DM646x series is its dual-core architecture. This consists of a Digital Signal Processor (DSP) alongside an ARM-based application processor. The DSP is predominantly employed for critical processing tasks, allowing it to execute high-throughput data streams efficiently, while the ARM processor manages control tasks and user interfaces. This division of labor enhances overall system performance and responsiveness.

The series supports a wide range of video formats and technologies, including HD video encoding and decoding, which accommodates HD resolution content essential for today’s multimedia applications. Furthermore, the TMS320DM646x integrates hardware accelerators for video compression standards such as H.264 and MPEG-4, which significantly reduce the processing burden on the CPU, resulting in lower power consumption and higher efficiency.

Networking capabilities are another significant feature of the TMS320DM646x. With support for Ethernet, the device can handle streaming media applications and connectivity, facilitating the transmission of high-quality audio and video over the internet. This connectivity is crucial for developing robust IPTV and streaming solutions.

Power management is a primary focus in the design of the TMS320DM646x series. The processors are built to operate efficiently with minimal power consumption, making them suitable for portable and battery-operated devices. The low power characteristics do not compromise performance, enabling high computational capabilities while maintaining energy efficiency.

Overall, the Texas Instruments TMS320DM646x series offers an exceptional combination of processing power, advanced multimedia capabilities, and energy efficiency. It optimally supports a wide array of applications, from video processing and image analysis to audio encoding. This comprehensive feature set, along with its robust architecture, positions the TMS320DM646x as a leading choice for developers in the digital media space.