www.ti.com

Architecture

2.4Ethernet Protocol Overview

Ethernet provides an unreliable, connection-less service to a networking application. A brief overview of the Ethernet protocol is given in the following subsections. For in-depth information on the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method, which is the Ethernet’s multiple access protocol, see the IEEE 802.3 standard document.

2.4.1Ethernet Frame Format

All the Ethernet technologies use the same frame structure. The format of an Ethernet frame is shown in Figure 4 and described in Table 3. The Ethernet packet, which is the collection of bytes representing the data portion of a single Ethernet frame on the wire, is shown outlined in bold. The Ethernet frames are of variable lengths, with no frame smaller than 64 bytes or larger than RXMAXLEN bytes (header, data, and CRC).

Figure 4. Ethernet Frame Format

 

 

 

Number of bytes

 

7

1

6

6

2

46−1500

 

 

 

 

 

 

Preamble

SFD

Destination

Source

Len

Data

 

 

 

 

 

 

Legend: SFD=Start Frame Delimeter; FCS=Frame Check Sequence (CRC)

Table 3. Ethernet Frame Description

4

FCS

Field

Bytes

Description

Preamble

7

Preamble. These 7 bytes have a fixed value of 55h and serve to wake up the receiving

 

 

EMAC ports and to synchronize their clocks to that of the sender’s clock.

SFD

1

Start of Frame Delimiter. This field with a value of 5Dh immediately follows the preamble

 

 

pattern and indicates the start of important data.

Destination

6

Destination address. This field contains the Ethernet MAC address of the EMAC port for

 

 

which the frame is intended. It may be an individual or multicast (including broadcast)

 

 

address. When the destination EMAC port receives an Ethernet frame with a destination

 

 

address that does not match any of its MAC physical addresses, and no promiscuous,

 

 

multicast or broadcast channel is enabled, it discards the frame.

Source

6

Source address. This field contains the MAC address of the Ethernet port that transmits the

 

 

frame to the Local Area Network.

Len

2

Length/Type field. The length field indicates the number of EMAC client data bytes

 

 

contained in the subsequent data field of the frame. This field can also be used to identify

 

 

the type of data the frame is carrying.

Data

46 to

Data field. This field carries the datagram containing the upper layer protocol frame, that is,

 

(RXMAXLEN - 18)

IP layer datagram. The maximum transfer unit (MTU) of Ethernet is (RXMAXLEN - 18)

 

 

bytes. This means that if the upper layer protocol datagram exceeds (RXMAXLEN - 18)

 

 

bytes, then the host has to fragment the datagram and send it in multiple Ethernet packets.

 

 

The minimum size of the data field is 46 bytes. This means that if the upper layer datagram

 

 

is less then 46 bytes, the data field has to be extended to 46 bytes by appending extra bits

 

 

after the data field, but prior to calculating and appending the FCS.

FCS

4

Frame Check Sequence. A cyclic redundancy check (CRC) is used by the transmit and

 

 

receive algorithms to generate a CRC value for the FCS field. The frame check sequence

 

 

covers the 60 to (RXMAXLEN - 4) bytes of the packet data. Note that this 4-byte field may

 

 

or may not be included as part of the packet data, depending on how the EMAC is

 

 

configured.

SPRUEQ6–December 2007

Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO)

19

Submit Documentation Feedback

Page 19
Image 19
Texas Instruments TMS320DM646x manual Ethernet Protocol Overview, Ethernet Frame Format, Ethernet Frame Description

TMS320DM646x specifications

The Texas Instruments TMS320DM646x series is a powerful family of digital media processors designed to handle high-performance applications in video, imaging, and audio processing. These devices leverage advanced technologies to deliver efficient processing capabilities for a variety of embedded systems, making them ideal for multimedia solutions.

At the core of the TMS320DM646x is the versatile DSP architecture, which optimizes performance for digital signal processing tasks. This architecture allows for real-time processing, enabling the devices to handle complex algorithms necessary for image and video compression, thereby meeting the rigorous demands of modern multimedia applications.

One of the standout features of the TMS320DM646x series is its dual-core architecture. This consists of a Digital Signal Processor (DSP) alongside an ARM-based application processor. The DSP is predominantly employed for critical processing tasks, allowing it to execute high-throughput data streams efficiently, while the ARM processor manages control tasks and user interfaces. This division of labor enhances overall system performance and responsiveness.

The series supports a wide range of video formats and technologies, including HD video encoding and decoding, which accommodates HD resolution content essential for today’s multimedia applications. Furthermore, the TMS320DM646x integrates hardware accelerators for video compression standards such as H.264 and MPEG-4, which significantly reduce the processing burden on the CPU, resulting in lower power consumption and higher efficiency.

Networking capabilities are another significant feature of the TMS320DM646x. With support for Ethernet, the device can handle streaming media applications and connectivity, facilitating the transmission of high-quality audio and video over the internet. This connectivity is crucial for developing robust IPTV and streaming solutions.

Power management is a primary focus in the design of the TMS320DM646x series. The processors are built to operate efficiently with minimal power consumption, making them suitable for portable and battery-operated devices. The low power characteristics do not compromise performance, enabling high computational capabilities while maintaining energy efficiency.

Overall, the Texas Instruments TMS320DM646x series offers an exceptional combination of processing power, advanced multimedia capabilities, and energy efficiency. It optimally supports a wide array of applications, from video processing and image analysis to audio encoding. This comprehensive feature set, along with its robust architecture, positions the TMS320DM646x as a leading choice for developers in the digital media space.