Appendix C How to Select the Right AC Motor Drive

Selection Note

1.When the AC Motor Drive is connected directly to a large-capacity power transformer (600kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit and the converter section may be damaged. To avoid this, use an AC input reactor (optional) before AC Motor Drive mains input to reduce the current and improve the input power efficiency.

2.When a special motor is used or more than one motor is driven in parallel with a single AC Motor Drive, select the AC Motor Drive current 1.25x(Sum of the motor rated currents).

3.The starting and accel./decel. characteristics of a motor are limited by the rated current and the overload protection of the AC Motor Drive. Compared to running the motor D.O.L. (Direct On-Line), a lower starting torque output with AC Motor Drive can be expected. If higher starting torque is required (such as for elevators, mixers, tooling machines, etc.) use an AC Motor Drive of higher capacity or increase the capacities for both the motor and the AC Motor Drive.

4.When an error occurs on the drive, a protective circuit will be activated and the AC Motor Drive output is turned off. Then the motor will coast to stop. For an emergency stop, an external mechanical brake is needed to quickly stop the motor.

Parameter Settings Note

1.The AC Motor Drive can be driven at an output frequency up to 400Hz (less for some models) with the digital keypad. Setting errors may create a dangerous situation. For safety, the use of the upper limit frequency function is strongly recommended.

2.High DC brake operating voltages and long operation time (at low frequencies) may cause overheating of the motor. In that case, forced external motor cooling is recommended.

3.Motor accel./decel. time is determined by motor rated torque, load torque, and load inertia.

4.If the stall prevention function is activated, the accel./decel. time is automatically extended to a length that the AC Motor Drive can handle. If the motor needs to decelerate within a certain time with high load inertia that can’t be handled by the AC Motor Drive in the required time, either use an external brake resistor and/or brake unit, depending on the model, (to shorten deceleration time only) or increase the capacity for both the motor and the AC Motor Drive.

C-4

Revision August 2008, 03VE, SW V2.04

Page 287
Image 287
Delta Electronics VFD-VE Series manual Selection Note, Parameter Settings Note

VFD-VE Series specifications

Delta Electronics VFD-VE Series is a state-of-the-art variable frequency drive (VFD) designed to enhance energy efficiency and improve the operational capabilities of various industrial applications. Renowned for its reliability and performance, the VFD-VE Series serves a diverse range of sectors including manufacturing, HVAC, and water treatment.

One of the primary features of the VFD-VE Series is its advanced control algorithms, which provide precise speed and torque control for AC motors. The series utilizes a vector control method that enables excellent dynamic response and a wide speed range. This is particularly beneficial for applications requiring variable speeds or precise positioning, as it ensures smooth acceleration and deceleration while maintaining optimal performance.

The VFD-VE Series stands out with its Energy Saving Technology. By intelligently optimizing motor control parameters based on the load, the VFD can significantly reduce energy consumption. This built-in functionality not only helps companies save on electricity costs but also contributes to a lower carbon footprint, aligning with global sustainability efforts.

Another key characteristic of the VFD-VE Series is its user-friendly interface. Equipped with a clear and intuitive LCD display, it simplifies monitoring and adjustments, allowing operators to configure settings easily. Additionally, the series supports various communication protocols such as Modbus, EtherCAT, and CANopen, enabling seamless integration with existing control systems for enhanced automation.

The VFD-VE Series is built to withstand harsh industrial environments. Its robust design includes features such as IP20 or IP55 ingress protection ratings, ensuring reliable operation even in dusty or humid conditions. Furthermore, the drives are equipped with advanced thermal management systems that prevent overheating, thereby prolonging the lifespan of the equipment.

Safety is also a priority in the VFD-VE Series, which incorporates multiple safety features such as overvoltage, undervoltage, and overcurrent protection. These safeguards help protect both the drive itself and the connected machinery, minimizing downtime and reducing maintenance costs.

Overall, Delta Electronics VFD-VE Series combines cutting-edge technology, energy efficiency, and robust design to meet the dynamic needs of modern industrial automation. With its advanced features and reliable performance, it is an ideal choice for businesses aiming to optimize their processes and achieve greater energy savings.