Chapter 42 Configuring IP Multicast Routing

Understanding Cisco’s Implementation of IP Multicast Routing

When a new receiver on a previously pruned branch of the tree joins a multicast group, the PIM DM device detects the new receiver and immediately sends a graft message up the distribution tree toward the source. When the upstream PIM DM device receives the graft message, it immediately puts the interface on which the graft was received into the forwarding state so that the multicast traffic begins flowing to the receiver.

PIM-SM

PIM-SM uses shared trees and shortest-path-trees (SPTs) to distribute multicast traffic to multicast receivers in the network. In PIM-SM, a router or multilayer switch assumes that other routers or switches do not forward multicast packets for a group, unless there is an explicit request for the traffic (join message). When a host joins a multicast group using IGMP, its directly connected PIM-SM device sends PIM join messages toward the root, also known as the RP. This join message travels router-by-router toward the root, constructing a branch of the shared tree as it goes.

The RP keeps track of multicast receivers. It also registers sources through register messages received from the source’s first-hop router (designated router [DR]) to complete the shared tree path from the source to the receiver. When using a shared tree, sources must send their traffic to the RP so that the traffic reaches all receivers.

Prune messages are sent up the distribution tree to prune multicast group traffic. This action permits branches of the shared tree or SPT that were created with explicit join messages to be torn down when they are no longer needed.

When the number of PIM-enabled interfaces exceeds the hardware capacity and PIM-SM is enabled with the SPT threshold is set to infinity, the switch does not create (S,G) entries in the multicast routing table for the some directly connected interfaces if they are not already in the table. The switch might not correctly forward traffic from these interfaces.

PIM Stub Routing

The PIM stub routing feature, available in all software images, reduces resource usage by moving routed traffic closer to the end user.

Note The IP base image contains only PIM stub routing. The IP services image contains complete multicast routing. On a switch running the IP base image, if you try to configure a VLAN interface with PIM dense-mode, sparse-mode, or dense-sparse-mode, the configuration is not allowed.

In a network using PIM stub routing, the only allowable route for IP traffic to the user is through a switch that is configured with PIM stub routing. PIM passive interfaces are connected to Layer 2 access domains, such as VLANs, or to interfaces that are connected to other Layer 2 devices. Only directly connected multicast (IGMP) receivers and sources are allowed in the Layer 2 access domains. The PIM passive interfaces do not send or process any received PIM control packets.

When using PIM stub routing, you need to configure the distribution and remote routers to use IP multicast routing and to configure only the switch as a PIM stub router. The switch does not route transit traffic between distribution routers. You should also configure EIGRP stub routing when configuring PIM stub routing on the switch. For more information, see the “EIGRP Stub Routing” section on page 38-42.

The redundant PIM stub router topology is not supported. The redundant topology exists when there is more than one PIM router forwarding multicast traffic to a single access domain. PIM messages are blocked, and the PIM asset and designated router election mechanisms are not supported on the PIM

Catalyst 3750-E and 3560-E Switch Software Configuration Guide

 

OL-9775-02

42-5

 

 

 

Page 1011
Image 1011
Cisco Systems 3750E manual PIM Stub Routing, 42-5